Search results

1 – 10 of 386
Article
Publication date: 18 November 2021

Liaoyuan Chen, Tianbiao Yu, Ying Chen and Wanshan Wang

The purpose of this paper is to improve the dimensional accuracy of inclined thin-walled parts fabricated by laser direct metal deposition (DMD) under an open-loop control system.

Abstract

Purpose

The purpose of this paper is to improve the dimensional accuracy of inclined thin-walled parts fabricated by laser direct metal deposition (DMD) under an open-loop control system.

Design/methodology/approach

In this study, a novel method of the adaptive slicing method and DMD process with feedback adjustment of deposition height has been developed to successively fabricate complex inclined thin-walled square tube elbow parts. The defocus amount was used as a variable to the matching between the deposition thickness and the adaptive slicing height.

Findings

The low relative error of dimensional accuracy between experimental and designed parts shows that the matching of the single-layer deposition thickness and the adaptive slicing height can be realized by optimizing the defocusing amount. The negative feedback of the thin-wall part height can be achieved when the defocus amount and the z-axis increment are less than deposition thickness. The improvement of dimensional accuracy of inclined thin-walled parts is also attributed to the optimized scanning strategy.

Practical implications

The slicing method and deposition process can provide technical guidance for other additive manufacturing (AM) systems to fabricate metal thin-walled parts with high dimensional accuracy because the feedback control of deposition height can be realized only by the optimized process.

Originality/value

This study provides a novel adaptive slice method and corresponding the deposition process, and expands the slicing method of AM metal parts.

Article
Publication date: 1 October 2021

Xi Chen, Youheng Fu, Fanrong Kong, Runsheng Li, Yu Xiao, Jiannan Hu and Haiou Zhang

The major problem that limits the widespread use of WAAM technology is the forming quality. However, most of the current research focuses on post-process detections that are…

Abstract

Purpose

The major problem that limits the widespread use of WAAM technology is the forming quality. However, most of the current research focuses on post-process detections that are time-consuming, expensive and destructive. This paper aims to achieve the on-line detection and classification of the common defects, including hump, deposition collapse, deviation, internal pore and surface slag inclusion.

Design/methodology/approach

This paper proposes an in-process multi-feature data fusion nondestructive testing method based on the temperature field of the WAAM process. A thermal imager is used to collect the temperature data of the deposition layer in real-time. Efficient processing methods are proposed in this paper, such as the temperature stack algorithm, width extraction algorithm and a classification model based on a residual neural network. Some features closely related to the forming quality were extracted, containing the profile image and width curve of the deposition layer and abnormal temperature features in longitudinal and cross-sections. These features are used to achieve the detection and classification of defects.

Findings

Thermal non-destructive testing is a potentially superior technology for in-process detection in the industrial field. Based on the temperature field, extracting the most relevant features of the defect information is crucial. This paper pushes current infrared (IR) monitoring methods toward real-time detection and proposes an in-process multi-feature data fusion non-destructive testing method based on the temperature field of the WAAM process.

Originality/value

In this paper, the single-layer and multi-layer WAAM samples are preset with various defects, such as hump, deposition collapse, deviation, pore and slag inclusion. A multi-feature nondestructive testing methodology is proposed to realize the in-process detection and classification of the defects. A temperature stack algorithm is proposed, which improves the detection accuracy of profile change and solves the problem of uneven temperature from arc striking to arc extinguishing. The combination of residual neural network greatly improves the accuracy and efficiency of detection.

Details

Rapid Prototyping Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 September 2019

Bohao Xu, Xiaodong Tan, Xizhi Gu, Donghong Ding, Yuelin Deng, Zhe Chen and Jing Xu

Once an uneven substrate is aligned, traditional control theories and methods can be used on it, so aligning is of great significance for the development of wire and arc additive…

Abstract

Purpose

Once an uneven substrate is aligned, traditional control theories and methods can be used on it, so aligning is of great significance for the development of wire and arc additive manufacturing (WAAM). This paper aims to propose a shape-driven control method for aligning a substrate with slopes to expand the application of WAAM.

Design/methodology/approach

A substrate with slopes must be aligned by depositing weld beads with slopes. First, considering the large height differences of slopes, multi-layer deposition is needed, and the number of layer of weld beads must be ascertained. Second, the change in the deposition rate is controlled as a ramp function to generate weld beads with slopes. Third, the variation of the deposition rate must be fine-tuned to compensate for the deviation between the actual and theoretical layer heights at the deposition of each layer. Finally, the parameters of the ramp functions at the deposition of each layer are determined through an optimization method.

Findings

First, to model the response function of layer height to deposition rate, the experiments are conducted with the deposition rate jumping from 4 to 8 mm/s and from 8 to 4 mm/s. When the deposition rate jumps from 4 to 8 mm/s and from 8 to 4 mm/s, the difference in the height of each layer decreases as the number of layer increases. Second, the variation of the deposition rate can be fine-tuned based on the deviation between the measured and theoretical layer heights because the variation of the deposition rate is proportional to the layer height when the initial and end deposition rates are near 4 or 8 mm/s, respectively. Third, the experimental results demonstrate that the proposed method is effective for single-layer aligning and aligning a substrate with one or more slopes.

Originality/value

The proposed method can expand the application of WAAM to an uneven substrate with slopes and lays the foundation for aligning tasks focused on uneven substrates with more complex shapes.

Details

Rapid Prototyping Journal, vol. 25 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 October 2021

Bo Chen, Zheng Meng, Kai Yang, Yongzhen Yao, Caiwang Tan and Xiaoguo Song

The purpose of this paper is to predict and control the composition during laser additive manufacturing, since composition control is important for parts manufactured by laser…

Abstract

Purpose

The purpose of this paper is to predict and control the composition during laser additive manufacturing, since composition control is important for parts manufactured by laser additive manufacturing. Aluminum and steel functionally graded material (FGM) were manufactured by laser metal deposition, and the composition was analyzed by means of spectral analysis simultaneously.

Design/methodology/approach

The laser metal deposition process was carried out on a 5 mm thick 316L plate. Spectral line intensity ratio and plasma temperature were chosen as two main spectroscopic diagnosis parameters to predict the compositional variation. Single-trace single-layer experiments and single-trace multi-layer experiments were done, respectively, to test the feasibility of the spectral diagnosis method.

Findings

Experiment results showed that with the composition of metal powder changing from steel to aluminum, the spectral intensity ratio of the characteristic spectral line is proportional to the elemental content in the plasma. When the composition of deposition layers changed, the characteristic spectrum line intensity ratio changed obviously. And the linear chemical composition analysis results confirmed the gradient composition variation of the additive manufacturing parts. The results verified the feasibility of composition analysis based on spectral information in the laser additive manufacturing process.

Originality/value

The composition content of aluminum and steel FGM was diagnosed by spectral information during laser metal deposition, and the relationship between spectral intensity and composition was established.

Details

Rapid Prototyping Journal, vol. 28 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 2005

Daniel Jean, W. Jack Lackey and Chad E. Duty

To describe the thermal imaging control system used to deposit lines of graphite in a laser chemical vapor deposition (LCVD) system.

Abstract

Purpose

To describe the thermal imaging control system used to deposit lines of graphite in a laser chemical vapor deposition (LCVD) system.

Design/methodology/approach

A thermal imaging‐based control system is applied to the LCVD process to deposit layered carbon lines of uniform height and width. A 100 W CO2 laser focused to a 200 μm diameter spot size is used to provide the heat source for the carbon deposition. A high resolution thermal imaging camera is used to monitor and control the average deposition temperature.

Findings

Carbon lines are grown with heights of 250 μm and widths of 170 μm consisting of 20 layers. Laser spot temperatures are in excess of 2,170°C, and the total pressure used is 1 atm with a 75 percent methane concentration and the remainder hydrogen. The length of the lines is 3.3 mm, and the scan speed is 5 mm/min. The volumetric deposition rate is 0.648 mm3/h.

Research limitations/implications

The temperature process control resulted in uniform geometry at the center of the lines, but it was not as effective at the ends of the lines where the geometry was more complex.

Originality/value

Introduces a control technique for uniform line deposition for the LCVD process, which represents a core building block for complex geometries. The establishment of basic control algorithms will enable LCVD to realize the potential for rapid prototyping of metals and ceramics with sub‐millimeter feature sizes.

Details

Assembly Automation, vol. 25 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 15 December 2021

Magdalena Cortina, Jon Iñaki Arrizubieta, Aitzol Lamikiz and Eneko Ukar

This paper aims to analyse the effects derived from the presence of residual coolant from machining operations on the Directed Energy Deposition of AISI H13 tool steel and the…

Abstract

Purpose

This paper aims to analyse the effects derived from the presence of residual coolant from machining operations on the Directed Energy Deposition of AISI H13 tool steel and the quality of the resulting part.

Design/methodology/approach

In the present paper, the effectiveness of various cleaning techniques, including laser vaporising and air blasting, applied to different water/oil concentrations are studied. For this purpose, single-layer and multi-layer depositions are performed. Besides, the influence of the powder adhered to the coolant residues remaining on the surface of the workpiece is analysed. In all cases, cross-sections are studied in-depth, including metallographic, microhardness, scanning electron microscopy and crack mechanism analyses.

Findings

The results show that, although no significant differences were found for low oil concentrations when remarkably high oil concentrations were used the deposited material cracked, regardless of the cleaning technique applied. The crack initiation and propagation mechanisms have been analysed, concluding that the presence of oil leads to hydrogen induced cracking.

Originality/value

High oil concentration residues from previous machining operations in hybrid manufacturing led to hydrogen induced cracking when working with AISI H13 tool steel. The results obtained will help in defining future hybrid manufacturing processes that combine additive and subtractive operations.

Details

Rapid Prototyping Journal, vol. 28 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 May 2021

Xuewei Fang, Chuanqi Ren, Lijuan Zhang, Changxing Wang, Ke Huang and Bingheng Lu

This paper aims at fabricating large metallic components with high deposition rates, low equipment costs through wire and wire and arc additive manufacturing (WAAM) method, in…

Abstract

Purpose

This paper aims at fabricating large metallic components with high deposition rates, low equipment costs through wire and wire and arc additive manufacturing (WAAM) method, in order to achieve the morphology and mechanical properties of manufacturing process, a bead morphology prediction model with high precision for ideal deposition of every pass was established.

Design/methodology/approach

The dynamic response of the process parameters on the bead width and bead height of cold metal transfer (CMT)-based AM was analyzed. A laser profile scanner was used to continuously capture the morphology variation. A prediction model of the deposition bead morphology was established using response surface optimization. Moreover, the validity of the model was examined using 15 groups of quadratic regression analyzes.

Findings

The relative errors of the predicted bead width and height were all less than 5% compared with the experimental measurements. The model was then preliminarily used with necessary modifications, such as further considering the interlayer process parameters, to guide the fabrication of complex three-dimensional components.

Originality/value

The morphology prediction of WAAMed bead is a critical issue. Most research has focused on the formability and defects in CMT-based WAAM and little research on the effect of process parameters on the morphology of the deposited layer in CMT-based WAAM has been conducted. To test the sensitivities of the processing parameters to bead size, the dynamic response of key parameters was investigated. A regression model was established to guide the process parameter optimization for subsequent multi-layer or component deposition.

Details

Rapid Prototyping Journal, vol. 27 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 December 2019

Muhammad Omar Shaikh, Ching-Chia Chen, Hua-Cheng Chiang, Ji-Rong Chen, Yi-Chin Chou, Tsung-Yuan Kuo, Kei Ameyama and Cheng-Hsin Chuang

Using wire as feedstock has several advantages for additive manufacturing (AM) of metal components, which include high deposition rates, efficient material use and low material…

Abstract

Purpose

Using wire as feedstock has several advantages for additive manufacturing (AM) of metal components, which include high deposition rates, efficient material use and low material costs. While the feasibility of wire-feed AM has been demonstrated, the accuracy and surface finish of the produced parts is generally lower than those obtained using powder-bed/-feed AM. The purpose of this study was to develop and investigate the feasibility of a fine wire-based laser metal deposition (FW-LMD) process for producing high-precision metal components with improved resolution, dimensional accuracy and surface finish.

Design/methodology/approach

The proposed FW-LMD AM process uses a fine stainless steel wire with a diameter of 100 µm as the additive material and a pulsed Nd:YAG laser as the heat source. The pulsed laser beam generates a melt pool on the substrate into which the fine wire is fed, and upon moving the X–Y stage, a single-pass weld bead is created during solidification that can be laterally and vertically stacked to create a 3D metal component. Process parameters including laser power, pulse duration and stage speed were optimized for the single-pass weld bead. The effect of lateral overlap was studied to ensure low surface roughness of the first layer onto which subsequent layers can be deposited. Multi-layer deposition was also performed and the resulting cross-sectional morphology, microhardness, phase formation, grain growth and tensile strength have been investigated.

Findings

An optimized lateral overlap of about 60-70% results in an average surface roughness of 8-16 µm along all printed directions of the X–Y stage. The single-layer thickness and dimensional accuracy of the proposed FW-LMD process was about 40-80 µm and ±30 µm, respectively. A dense cross-sectional morphology was observed for the multilayer stacking without any visible voids, pores or defects present between the layers. X-ray diffraction confirmed a majority austenite phase with small ferrite phase formation that occurs at the junction of the vertically stacked beads, as confirmed by the electron backscatter diffraction (EBSD) analysis. Tensile tests were performed and an ultimate tensile strength of about 700-750 MPa was observed for all samples. Furthermore, multilayer printing of different shapes with improved surface finish and thin-walled and inclined metal structures with a minimum achievable resolution of about 500 µm was presented.

Originality/value

To the best of the authors’ knowledge, this is the first study to report a directed energy deposition process using a fine metal wire with a diameter of 100 µm and can be a possible solution to improving surface finish and reducing the “stair-stepping” effect that is generally observed for wires with a larger diameter. The AM process proposed in this study can be an attractive alternative for 3D printing of high-precision metal components and can find application for rapid prototyping in a range of industries such as medical and automotive, among others.

Details

Rapid Prototyping Journal, vol. 26 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 September 2005

A. Sreenathbabu, K.P. Karunakaran and C. Amarnath

This paper discusses the optimization of the process parameters for the hybrid‐layered manufacturing (HLM) process during its weld layer deposition with subsequent surface…

3175

Abstract

Purpose

This paper discusses the optimization of the process parameters for the hybrid‐layered manufacturing (HLM) process during its weld layer deposition with subsequent surface machining in attaining the desired accuracy and contour profile of the deposited weld layer thickness.

Design/methodology/approach

The HLM process integrates the synergic metal inert gas (MIG) – metal active gas (MAG) welding process for depositing the metal layer of a desired slice thickness and perform the computer numerical control (CNC) machining process on the deposited layer to enhance both the surface quality and dimensional accuracy of the deposited layer. For the HLM process the weld bead geometry plays a vital role in determination of the layer thickness, surface quality, build time, heat input into the deposited layer and the hardness attained by the prototype. A feasible weld bead width and heights are to be formulated for the exterior contour weld path deposition and for the interior weld cladding. Thus, Taguchi methodology was employed with minimum number of trails as compared with classical statistical experiments. This study systematically reveals the complex cause‐effect relationships between design parameters and performance.

Findings

Statistical design of experiments using orthogonal arrays and signal‐to‐noise (S/N) ratios are performed to constitute the core of the robust design procedure. Experimental confirmations of the performance characteristic using the derived optimal levels of process parameters are provided to confirm the effectiveness of this approach.

Research limitations/implications

The welding parameters such as current, voltage, arc length, wire feed rates, wire stick‐out distance, shielding gas, filler wire diameter, weld speed, etc. will influence on the deposited weld bead geometry. Further investigations are to be carried out during adaptive layer deposition on the induced thermal stresses and its influence on the hardness of the deposited weld layer.

Originality/value

This paper describes a low cost direct rapid tooling process, HLM. This unique methodology would reduce the cost and time to make molds and dies that are used in batch production.

Details

Rapid Prototyping Journal, vol. 11 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 March 2011

Gangxian Zhu, Dichen Li, Anfeng Zhang, Gang Pi and Yiping Tang

The purpose of this paper is to investigate the influencing rule of the standoff distance variations between the nozzle outlet and the powder deposition point on forming…

Abstract

Purpose

The purpose of this paper is to investigate the influencing rule of the standoff distance variations between the nozzle outlet and the powder deposition point on forming dimensional accuracy.

Design/methodology/approach

The thin‐wall parts were built with three different standoff distances: 1 mm more than the powder focus length, equal to the powder focus length and 1 mm less than the powder focus length. Based on the experimental results, the steady standoff distance can be acquired and the difference between the building height and the ideal height of thin‐wall parts can be compensated automatically in several layers by theoretical calculation.

Findings

The experimental results show that the top surface unevenness of thin‐wall parts can be compensated automatically on the consequent successive layers when the standoff distance is less than the powder focal length from the nozzle outlet to the powder focal point, and the poorer results are obtained when the standoff distance is equal to or more than the powder focal length in the deposition of stainless steel 316L under open‐loop control.

Practical implications

The shape of parts affects the self‐regulation effect in practical applications, so the self‐regulation effect is useful when the single contour of parts is continuous straight faces and the surface of parts is perpendicular to the build platform, and will be useless for parts with holes.

Originality/value

According to the requirements under different process conditions in practical applications, one should first find out the relationship between the standoff distance and the building height of single‐trace cladding layer, and then use regression algorithm to obtain the stable standoff distance by simple theoretical calculation. The uniform building height, layer thickness and smooth surface can be obtained at the stable standoff distance under open‐loop control.

Details

Rapid Prototyping Journal, vol. 17 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 386