Search results

1 – 10 of 151
Article
Publication date: 10 February 2022

Lokesh Gupta and Rakesh Kumar

Natural good-quality sources of aggregates are depleting, whereas large amount of reclaimed asphalt pavement (RAP) is produced annually. Safe disposal and use of RAP in the cold…

Abstract

Purpose

Natural good-quality sources of aggregates are depleting, whereas large amount of reclaimed asphalt pavement (RAP) is produced annually. Safe disposal and use of RAP in the cold in-place recycling (CIR) using foamed bitumen could be sustainable approach where milling and mixing operations are accomplished simultaneously. This will not only help in minimizing contamination (probability) and transportation cost but also reduces the carbon footprints. Therefore, this study aims to investigate the scope of RAP utilization up to 100% and further its effect on the behavior of reclaimed asphalt foamed bituminous mix.

Design/methodology/approach

Reclaimed asphalt foamed bituminous mix (FBM) is still a new technique. The evidence of performance of 100% recycled pavement (CIR) is only anecdotal and lacks in systematic guidelines and literatures. Foam binder coating around the aggregates is also a concern. Therefore, this study is mainly emphasized to investigate the scope of RAP use in the FBM up to 100%. RAP content is varied in each trial, i.e. 70, 85, 100 and 0% (only fresh aggregates), to make the FBM. RAP use and its effect on the behavior of FBM in terms of resilient modulus, variation in resilient modulus with curing, rutting performance and the potential of resistance against the moisture damage are addressed.

Findings

Considering the laboratory studies, it can be accomplished that mechanistic properties and performance of FBM are largely influenced by RAP material and portray less susceptible characteristics against the moisture damage. FBM containing 70% RAP content exhibits maximum resilient modulus. However, use of RAP up to 100% in FBM is satisfying the minimum required specification.

Originality/value

Overall, the study may be helpful to highway professionals and could generate another possible option of 100% RAP replacing fresh aggregates in the flexible pavements.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 August 2021

Tengjiang Yu, Haitao Zhang, Junfeng Sun, Yabo Wang, Shuang Huang and Dan Chen

Using typical structure of asphalt pavement in Harbin area of China, and the formula of generalized friction coefficient between base and surface layers of asphalt pavement in…

Abstract

Purpose

Using typical structure of asphalt pavement in Harbin area of China, and the formula of generalized friction coefficient between base and surface layers of asphalt pavement in cold area is established.

Design/methodology/approach

Through structural characteristics analysis of asphalt pavement in cold area, the generalized formula of friction coefficient between base and surface layers of asphalt pavement in cold area is derived. The formula can quickly calculate the friction coefficient between layers of asphalt pavement.

Findings

Based on quantitative analysis to the contacting state between layers of asphalt pavement in cold area, the relationships between generalized friction coefficient and resilient modulus of asphalt mixtures, temperature shrinkage coefficient and temperature have been established.

Originality/value

The findings can enrich the description methods about the contacting state between layers of asphalt pavement, and have a certain theoretical and practical value. Through the application of the formula of generalized friction coefficient between layers, it can provide a technical basis for the asphalt pavement design, construction and maintenance in cold area.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 5 January 2021

Preetpal Singh, Amardeep Boora and Ashok Kumar Gupta

The purpose of this paper is to use the waste materials in soil stabilization and low traffic volume roads so as to minimize the cost of subgrades for road construction along with…

Abstract

Purpose

The purpose of this paper is to use the waste materials in soil stabilization and low traffic volume roads so as to minimize the cost of subgrades for road construction along with solving disposal problems of waste materials thus protecting the environment.

Design/methodology/approach

An extensive laboratory study has been carried out on various samples of soil alone and along with waste materials such as municipal solid waste incineration ash and marble dust by adding cement to evaluate their effect on geotechnical characteristics of clayey soils.

Findings

The experimental study revealed that mixture of soil:Municipal solid waste incineration ash (MSWIA):Cement and soil:Marble dust (MD):Cement can be successfully used for the construction of low traffic volume roads. The differential free swell of the clayey soil is nil on adding MSWIA: cement and MD: cement to clayey soil in optimum amounts.

Research limitations/implications

The research needs further experimentation on combining both MSWIA and MD together to stabilize clayey soil.

Practical implications

The research can be successfully used by government agencies in subgrades of low traffic roads.

Social implications

The utilization of waste materials in the study solved the disposal problem of both waste materials, thus protecting the environment and giving quality living standards to people.

Originality/value

The use of MSWIA along with cement and use of MD along with cement for evaluating geotechnical properties has not been studied in the past. The present study is focussed on the use of both these materials along with cement in soil stabilization.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 23 November 2018

Kabiru Abdullahi Ahmad, Norhidayah Abdul Hassan, Mohd Ezree Abdullah, Munder A.M. Bilema, Nura Usman, Al Allam Musbah Al Allam and Mohd Rosli Bin Hainin

In order to fully understand the properties of porous asphalt, investigation should be conducted from different point of views. This is from the fact that porous asphalt mixture…

Abstract

Purpose

In order to fully understand the properties of porous asphalt, investigation should be conducted from different point of views. This is from the fact that porous asphalt mixture designed with the same aggregate gradation and air void content can give different infiltration rate due to the different formation of the internal structure. Therefore, the purpose of this paper is to investigate the micro-structural properties and functional performance of porous asphalt simultaneously.

Design/methodology/approach

The aim is to develop imaging techniques to process and analyze the internal structure of porous asphalt mixture. A few parameters were established to analyze the air void properties and aggregate interlock within the gyratory compacted samples captured using a non-destructive scanning technique of X-ray computed tomography (CT) throughout the samples. The results were then compared with the functional performance in terms of permeability. Four aggregate gradations used in different countries, i.e. Malaysia, Australia, the USA and Singapore. The samples were tested for resilient modulus and permeability. Quantitative analysis of the microstructure was used to establish the relationships between the air void properties and aggregate interlock and the resilient modulus and permeability.

Findings

Based on the results, it was found that the micro-structural properties investigated have successfully described the internal structure formation and they reflect the results of resilient modulus and permeability. In addition, the imaging technique which includes the image processing and image analysis for internal structure quantification seems to be very useful and perform well with the X-ray CT images based on the reliable results obtained from the analysis.

Research limitations/implications

In this study, attention was limited to the study of internal structure of porous asphalt samples prepared in the laboratory using X-ray CT but can also be used to assess the quality of finished asphalt pavements by taking core samples for quantitative and qualitative analysis. The use of CT for material characterization presents a lot of possibilities in the future of asphalt concrete mix design.

Originality/value

Based on the validation process which includes comparisons between the values obtained from the image analysis and those from the performance test and it was found that the developed procedure satisfactorily assesses the air voids distribution and the aggregate interlock for this reason, it can be used.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 24 February 2012

Amir Hossein Alavi, Ali Mollahasani, Amir Hossein Gandomi and Jafar Boluori Bazaz

The purpose of this paper is to develop new constitutive models to predict the soil deformation moduli using multi expression programming (MEP). The soil deformation parameters…

Abstract

Purpose

The purpose of this paper is to develop new constitutive models to predict the soil deformation moduli using multi expression programming (MEP). The soil deformation parameters formulated are secant (Es) and reloading (Er) moduli.

Design/methodology/approach

MEP is a new branch of classical genetic programming. The models obtained using this method are developed upon a series of plate load tests conducted on different soil types. The best models are selected after developing and controlling several models with different combinations of the influencing parameters. The validation of the models is verified using several statistical criteria. For more verification, sensitivity and parametric analyses are carried out.

Findings

The results indicate that the proposed models give precise estimations of the soil deformation moduli. The Es prediction model provides considerably better results than the model developed for Er. The Es formulation outperforms several empirical models found in the literature. The validation phases confirm the efficiency of the models for their general application to the soil moduli estimation. In general, the derived models are suitable for fine‐grained soils.

Originality/value

These equations may be used by designers to check the general validity of the laboratory and field test results or to control the solutions developed by more in‐depth deterministic analyses.

Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Article
Publication date: 21 June 2019

Amit Srivastava, Dharmendra Kumar Srivastava and Anil Kumar Misra

The present study aims to demonstrate the performance assessment of flexible pavement structure in probabilistic framework with due consideration of spatial variability modeling…

Abstract

Purpose

The present study aims to demonstrate the performance assessment of flexible pavement structure in probabilistic framework with due consideration of spatial variability modeling of input parameter.

Design/methodology/approach

The analysis incorporates mechanistic–empirical approach in which numerical analysis with spatial variability modeling of input parameters, Monte Carlo simulations (MCS) and First Order Reliability Method (FORM) are combined together for the reliability analysis of the flexible pavement. Random field concept along with Cholesky decomposition technique is used for the spatial variability modeling of the input parameter and implemented in commercially available finite difference code FLAC for the numerical analysis of pavement structure.

Findings

Results of the reliability analysis, with spatial variability modeling of input parameter, are compared with the corresponding results obtained without considering spatial variability of parameters. Analyzing a particular three-layered flexible pavement structure, it is demonstrated that spatial variability modeling of input parameter provides more realistic treatment to property variations in space and influences the response of the pavement structure, as well as its performance assessment.

Originality/value

Research is based on reliability analysis approach, which can also be used in decision-making for quality control and flexible pavement design in a given environment of uncertainty and extent of spatially varying input parameters in a space.

Details

Journal of Engineering, Design and Technology , vol. 17 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 28 April 2014

Mark A. Hopkins

– The purpose of this paper is to present a new and efficient technique for discrete element modelling using non-convex polyhedral grain shapes.

Abstract

Purpose

The purpose of this paper is to present a new and efficient technique for discrete element modelling using non-convex polyhedral grain shapes.

Design/methodology/approach

The efficiency of the technique follows from the use of grains that are dilated versions of the basic polyhedral grain shapes. Dilation of an arbitrary polyhedral grain is accomplished by placing the center of a sphere of fixed radius at every point on the surface. The dilated vertices become sphere segments and the edges become cylinder segments. The sharpness of the vertices and edges can be adjusted by varying the dilation radius. Contacts between two dilated polyhedral grains can be grouped into three categories; vertex on surface, vertex on edge, and edge on edge, or in the grammar of the model, sphere on polygonal surface, sphere on cylinder, and cylinder on cylinder. Simple, closed-form solutions exist for each of these cases.

Findings

The speed of the proposed polyhedral discrete element model is compared to similar models using spherical and ellipsoidal grains. The polyhedral code is found to run about 40 percent as fast as an equivalent code using spherical grains and about 80 percent as fast as an equivalent code using ellipsoidal grains. Finally, several applications of the polyhedral model are illustrated.

Originality/value

Few examples of discrete element modeling studies in the literature use polyhedral grains. This dearth is because of the perceived complexity of the polyhedral coding challenges and the slow speed of the codes compared to codes for other grain shapes. This paper presents a much simpler approach to discrete element modeling using polyhedral grain shapes.

Details

Engineering Computations, vol. 31 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 January 2024

Rohit R. Salgude, Prasad Pailwan, Sunil Pimplikar and Dipak Kolekar

Soil is an essential component of road construction and is used in the form of subgrade materials. It ensures the stability and durability of the road under adverse conditions;…

Abstract

Purpose

Soil is an essential component of road construction and is used in the form of subgrade materials. It ensures the stability and durability of the road under adverse conditions; being one of the important parameters, poor judgment of the engineering properties of soil can lead to pavement failure. Geopathic stress (GS) is a subtle energy in the form of harmful electromagnetic radiation. This study aims to investigate the effect of GS on soil and concrete.

Design/methodology/approach

A total of 23 soil samples from stress zones and nonstress zones were tested for different engineering properties like water content, liquid limit, plastic limit, specific gravity and California bearing ratio. Two concrete panels were placed on GS zones, and their quality was monitored through nondestructive testing for a period of one year.

Findings

The result shows that the engineering properties of soil and pavement thickness are increasing in stress zones as compared with nonstress zones. For concrete panels, as time passes, the quality of the concrete gets reduced, which hints toward the detrimental effect of GS.

Originality/value

This research is a systematic, scientific, reliable study which evaluated subgrade characteristics thus determining the detrimental impact of the GS on soil and pavement thickness. On a concluding note, this study provides a detailed insight into the performance of the road segment when subjected to GS. Through this investigation, it is recommended that GS should be considered in the design of roads.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 March 2019

Deepa P., Meena Laad, Sangita and Rina Singh

The purpose of this paper is to study the recent work carried out in enhancing the properties of bitumen using nano-additives. Bitumen is a by-product obtained from the refining…

Abstract

Purpose

The purpose of this paper is to study the recent work carried out in enhancing the properties of bitumen using nano-additives. Bitumen is a by-product obtained from the refining process of crude oil, therefore making it a diminishing product. It has been used by mankind since ages for various applications like sealants, binders, waterproof coatings and pavement construction material. It is a black viscous substance with adhesive nature.

Design/methodology/approach

Bitumen is used as a binding material because of its ability to become liquid when heated and become solid when cooled and thus used largely in construction of roads because of its unique properties. Low softening point of bitumen leads to melting of bitumen during summer and causes rutting of roads, whereas during winter it leads to cracking as bitumen acts brittle in nature during low temperature. Increasing global demand of bitumen has created gap between demand and supply which is increasing with the passage of time. Further modern life has created very high traffic volume and heavy load which makes it essential to improve performance of bitumen.

Findings

Research studies have reported that the thermal properties of bitumen are enhanced by using thermoplastic polymers such as styrene-butadiene-styrene, polyethylene and ethylene-vinyl acetate, rubber and bio waste etc.

Originality/value

This paper reviews various types of materials which have been used to improve the properties of bitumen and explores the possibility to synthesise bitumen composite materials with nanoadditives with improved structural, mechanical and thermal properties.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 151