Search results

1 – 10 of over 9000
Article
Publication date: 1 October 2018

Jiawei Wang, Yanmin Jia, Guanhua Zhang, Jigang Han and Jinliang Liu

Most existing studies are confined to model beam tests, which cannot reflect the actual strengthening effects provided by prestressed carbon-fiber-reinforced polymer (CFRP) plates

Abstract

Purpose

Most existing studies are confined to model beam tests, which cannot reflect the actual strengthening effects provided by prestressed carbon-fiber-reinforced polymer (CFRP) plates to existing bridges. Hence, the actual capacity for strengthening existing bridges with prestressed CFRP plates is becoming an important concern for researchers. The paper aims to discuss these issues.

Design/methodology/approach

Static load tests of in-service prestressed concrete hollow slabs before and after strengthening are conducted. Based on the results of the tests, the failure characteristics, failure mechanism and bending performance of the slabs are compared and analyzed. Nonlinear finite element method is also used to calculate the flexural strength of the strengthened beams prestressed with CFRP plates.

Findings

Test results show that prestressed CFRP plate strengthening technology changes the failure mode of hollow slabs, delays the development of deflection and cracks, raises cracking and ultimate load-carrying capacity and remarkably improves mechanical behavior of the slab. In addition, the nonlinear finite element analyses are in good agreement with the test results.

Originality/value

Strengthening with prestressed CFRP plates has greater advantages compared to traditional CFRP plate strengthening technology and improves active material utilization. The presented finite element method can be applied in the flexural response calculations of strengthened beams prestressed with CFRP plates. The research results provide technical basis for maintenance and reinforcement design of existing bridges.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 16 April 2020

Zizheng Liu, Tianlai Yu and Linlin Zhang

The effects of fatigue load level and plate thickness on the fatigue performance of reinforced concrete T-beam bridges.

Abstract

Purpose

The effects of fatigue load level and plate thickness on the fatigue performance of reinforced concrete T-beam bridges.

Design/methodology/approach

Fatigue load tests were performed based on the fatigue damage theory of reinforced concrete, combined with finite element model analysis. The other conditions are controlled separately, and the fatigue performance of the T-beam bridge carriageway slab under different fatigue load levels and different plate thicknesses is studied.

Findings

The fatigue process of the carriageway slab of a reinforced concrete T-beam bridge is divided into three stages: fatigue damage generation, fatigue damage development and fatigue failure. Under certain other conditions, as the fatigue load level increases, the fatigue damage of the carriageway slab accelerates; as the thickness of the carriageway slab increases, the fatigue resistance of the carriageway slab improves.

Research limitations/implications

Tests and simulations have been carried out, but have not been applied to actual engineering for the time being.

Practical implications

Increasing the thickness of the carriageway slab in actual engineering is conducive to improving the fatigue performance of the bridge, and heavy-duty traffic has a greater impact on the durability of the bridge.

Social implications

It has certain reference value for bridge design, inspection and subsequent maintenance and reinforcement.

Originality/value

The originality of this article lies in designing and carrying out static and cyclic load tests separately, while introducing material damage models based on a large number of references and combining finite element analysis to consider the impact of a specific factor on fatigue performance. The test and analysis results can provide reference for bridge design and inspection.

Details

International Journal of Structural Integrity, vol. 12 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 January 1939

F.R. Shanley

MOST of the structural analysis problems that have resulted from the use of “thin‐walled” construction seem to fall into two general classes: Stress distribution and buckling

1118

Abstract

MOST of the structural analysis problems that have resulted from the use of “thin‐walled” construction seem to fall into two general classes: Stress distribution and buckling. Even these classes cannot be entirely separated, as the stress distribution can be greatly affected by buckling phenomena. A thorough understanding of the general principles of buckling (or structural instability) is therefore essential for efficient and safe design of modern aircraft structures.

Details

Aircraft Engineering and Aerospace Technology, vol. 11 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 January 1952

A.E. Johnson

DURING the last few years a programme of creep tests under general stress systems at high temperatures has been carried out at the N.P.L., using four metallic alloys which were…

Abstract

DURING the last few years a programme of creep tests under general stress systems at high temperatures has been carried out at the N.P.L., using four metallic alloys which were chosen as being representative of basic groups of materials used in practice in machinery operating at high temperatures. This work, it was hoped, would fulfil, at least partly, the great need for experimental data in this field, as opposed to the comparative abundance of theoretical work available, and also enable a critical examination of the merits of this theoretical work to be made. The materials chosen in order of examination were a cast 0–17 per cent carbon steel, an aluminium alloy (R.R. 59), a magnesium alloy (containing 2 per cent aluminium), and a nickel‐chromium alloy (Nimonic 75). Each material was tested at temperatures lying within the normal working range of the material in question. Thus the 0–17 per cent carbon steel was tested at 350, 450 and 550 dcg. C. (662, 842 and 1,022 deg. F.), the aluminium alloy at 150 and 200 deg. C. (302 and 392 dcg. F.), the magnesium alloy at 20 and 50 deg. C. (68 and 122 dcg. F.), and the nickel‐chromium alloy at 550 and 650 dcg. C. (1,022 and 1,202 deg. F.).

Details

Aircraft Engineering and Aerospace Technology, vol. 24 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 24 May 2013

Tiago R. Cesa and Branca F. Oliveira

The purpose of this paper is to present a finite element simulation to validate the strength and energy absorption capacity of a rollover protective structure (ROPS) of…

235

Abstract

Purpose

The purpose of this paper is to present a finite element simulation to validate the strength and energy absorption capacity of a rollover protective structure (ROPS) of agricultural tractors. The test consists of four steps: rear loading, crushing of the rear columns, side loading and crushing of the front columns. In this study a new design of a cabin for narrow tractors was simulated and from it the computational test was run for validation of the cabin. The simulation was performed using ANSYS software, considering the nonlinear characteristics of the materials, since during the test the plastic limit is reached. With the computational results, it was possible to predict the behavior of the structure before the real test. These results were used to propose design and materials changes that significantly improved the energy absorption, making it more efficient. The proposed cabin design reaches the energies and forces required in each step of the computational simulation of the ROPS test and the deformation needed to achieve them does not cause any cabin part to enter the operator survival space inside the cabin.

Design/methodology/approach

In the present study, numerous finite elements simulations have been carried out on a narrow cab for tractors.

Findings

It was conclude that it is possible to virtually test the ROPS, making material and design changes in order to have a more adequate structure before a first real test.

Originality/value

The present study is part of Tiago R. Cesa's Master thesis, an original research work.

Details

International Journal of Structural Integrity, vol. 4 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 31 August 2021

Kexin Zhang, Tianyu Qi, Dachao Li, Xingwei Xue and Zhimin Zhu

The paper aims to investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening, and health…

Abstract

Purpose

The paper aims to investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening, and health monitoring after reinforcement were carried out. The results of concrete strain and deflection show that the flexural strength and stiffness of the strengthened beam are improved.

Design/methodology/approach

This paper describes prestressed steel strand as a way to strengthen a 25-year-old continuous rigid frame bridge. High strength, low relaxation steel strand with high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with prestressed steel strand and steel plate was described. Ultimate bearing capacity of the bridge after strengthening was discussed based on finite element model.

Findings

The cumulative upward deflection of the second span the third span was 39.7 mm, which is basically consistent with the theoretical value, and the measured value is smaller than the theoretical value. The deflection value of the second span during data acquisition was −20 mm–10 mm, which does not exceed the maximum deflection value of live load, and the deflection of the bridge is in a safe state during normal use. Thus, this strengthened way with prestressed steel wire rope is feasible and effective.

Originality/value

This paper describes prestressed steel strand as a way to strengthen a 25-year-old continuous rigid frame bridge. To investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening and health monitoring after reinforcement were carried out.

Details

International Journal of Structural Integrity, vol. 12 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 19 October 2021

Tong Wang, Jing Di and Hongliang Zuo

In view of the defects of glued wood beams, a new composite member – reconstituted bamboo board reinforced glued wood beams is proposed to improve the bearing capacity of glued…

Abstract

Purpose

In view of the defects of glued wood beams, a new composite member – reconstituted bamboo board reinforced glued wood beams is proposed to improve the bearing capacity of glued wood beams.

Design/methodology/approach

The bending test studied the ordinary glulam beams and the reinforced glulam beams with different layer numbers and different layer thicknesses by comparing with six kinds of glulam beams strengthened with bamboo scrimber and one kind of ordinary glulam beams and used the method of third-point stepwise loading on the glulam beams strengthened with bamboo scrimber.

Findings

The bamboo scrimber improved the bending behavior of the ordinary glulam beams. The 10 mm bamboo scrimber layer can meet the requirements of the maximum ultimate bending capacity and minimize the defects. So 10 mm bamboo scrimber layer was the optimal thickness. During the loading process, the strain change of the normal section of the reconstituted bamboo board reinforced glued wood beam basically conforms to the plane section assumption.

Originality/value

The bending rigidities of the glulam beams strengthened with bamboo scrimber increased up to 28.25%, 8.53% and 76.67%, and the ultimate bending capacity increased from 83.44% to 99.34% with the increase of the bamboo scrimber plate layers (the replacement rate). The ultimate bending capacities and the bending rigidities of the glulam beams strengthened with bamboo scrimber increased to 52.32%∼60.18% and 90.07%∼99.34% with the changing of the bamboo scrimber thicknesses from 7.1 mm to 25 mm.

Details

International Journal of Structural Integrity, vol. 13 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 August 2018

Jiawei Wang, Guanhua Zhang, Jinliang Liu and Yanmin Jia

During service period, the bridge structures will be affected by the environment and load, so the carrying capacity will decline. The purpose of this paper is to research on the…

Abstract

Purpose

During service period, the bridge structures will be affected by the environment and load, so the carrying capacity will decline. The purpose of this paper is to research on the bearing capacity of bridge structures with time.

Design/methodology/approach

Destructive test and non-linear finite element analysis are carried out by utilizing two pretensioning prestressed concrete hollow slabs in service for 20 years; using the structural test deflection value to simulate the stiffness degradation of the service bridge and the finite element calculation results verify the accuracy of the calculation.

Findings

The flexural rigidity of the main beam when the test beam is destructed is degraded to approximately 20 percent of that before the test, which agrees well with the result of finite element analysis and indicates that the method of deducing the flexural rigidity of the structure according to the measured deflection value can effectively simulate the rigidity degradation law of the bridge in service. The crack resistance property of the test beam degrades obviously and the ultimate bearing capacity of the bending resistance does not degrade obviously.

Originality/value

The research results truly reflect the destruction process, destructive form, bearing capacity and rigidity degradation law of the old beam of the concrete bridge in service for 20 years and can provide technical basis for optimization design of newly built bridges of the same type and maintenance and reinforcement design of existing old bridges.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 December 1996

Bill Wilson

Outlines the various testing procedures carried out by BICERI, including engine fuel and lubricant testing. Describes the universal wear machine, and explains the three test

Abstract

Outlines the various testing procedures carried out by BICERI, including engine fuel and lubricant testing. Describes the universal wear machine, and explains the three test modes: pin‐on disc, block‐on‐ring and pin‐on‐reciprocating plate.

Details

Industrial Lubrication and Tribology, vol. 48 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 July 2022

Baocheng Liu, Jinliang Liu, Yanqian Wen, Qinglin Hu, Liang Liu and Shili Zhao

In this paper, to obtain shear and bending performance of carbon fiber-reinforced polymer (CFRP)-strengthened beams bonded by geopolymers, the effects of impregnated adhesive…

Abstract

Purpose

In this paper, to obtain shear and bending performance of carbon fiber-reinforced polymer (CFRP)-strengthened beams bonded by geopolymers, the effects of impregnated adhesive types, strengthened scheme, CFRP layer and pre-cracked width are investigated, and the performance of CFRP-strengthened beams is validated by the establishment of Finite Element Models (FEMs).

Design/methodology/approach

In this paper, static loading test and finite element analysis of epoxy-CFRP-strengthened (ECS) and geopolymer-CFRP-strengthened (GCS) were carried out, and the bearing capacity and stiffness were compared, the results show that GCS reinforced concrete (RC) beam is feasible and effective.

Findings

The bearing capacity, crack distribution and development, load–deflection curves of GCS RC beams with different pre-crack widths were investigated. The reinforcement effect of geopolymer achieves the same as epoxy, effectively improving the ultimate bearing capacity of the beam, with a maximum increase rate of 28.9%. The failure mode of CFRP is broken in the yield failure stage of GCS RC beam with reasonable strengthening form, and the utilization rate of CFRP is improved. CFRP-strengthened layers, pre-cracked widths significantly affect the mechanical properties, and deformation properties of the strengthened beams.

Originality/value

Compared with ECS RC beams, the bearing capacity and stiffness of GCS RC beams are similar to or even better, indicating that GCS RC beam is feasible and effective. It is a new method for CFRP-strengthened beams, which not only conforms to the concept of national ecological civilization construction, but also provides an economical, environmentally friendly and excellent performance solution for structural reinforcement.

Details

International Journal of Structural Integrity, vol. 13 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 9000