Search results

1 – 10 of over 16000
Article
Publication date: 5 April 2011

Amir Hossein Alavi and Amir Hossein Gandomi

The complexity of analysis of geotechnical behavior is due to multivariable dependencies of soil and rock responses. In order to cope with this complex behavior, traditional forms…

3794

Abstract

Purpose

The complexity of analysis of geotechnical behavior is due to multivariable dependencies of soil and rock responses. In order to cope with this complex behavior, traditional forms of engineering design solutions are reasonably simplified. Incorporating simplifying assumptions into the development of the traditional models may lead to very large errors. The purpose of this paper is to illustrate capabilities of promising variants of genetic programming (GP), namely linear genetic programming (LGP), gene expression programming (GEP), and multiexpression programming (MEP) by applying them to the formulation of several complex geotechnical engineering problems.

Design/methodology/approach

LGP, GEP, and MEP are new variants of GP that make a clear distinction between the genotype and the phenotype of an individual. Compared with the traditional GP, the LGP, GEP, and MEP techniques are more compatible with computer architectures. This results in a significant speedup in their execution. These methods have a great ability to directly capture the knowledge contained in the experimental data without making assumptions about the underlying rules governing the system. This is one of their major advantages over most of the traditional constitutive modeling methods.

Findings

In order to demonstrate the simulation capabilities of LGP, GEP, and MEP, they were applied to the prediction of: relative crest settlement of concrete‐faced rockfill dams; slope stability; settlement around tunnels; and soil liquefaction. The results are compared with those obtained by other models presented in the literature and found to be more accurate. LGP has the best overall behavior for the analysis of the considered problems in comparison with GEP and MEP. The simple and straightforward constitutive models developed using LGP, GEP and MEP provide valuable analysis tools accessible to practicing engineers.

Originality/value

The LGP, GEP, and MEP approaches overcome the shortcomings of different methods previously presented in the literature for the analysis of geotechnical engineering systems. Contrary to artificial neural networks and many other soft computing tools, LGP, GEP, and MEP provide prediction equations that can readily be used for routine design practice. The constitutive models derived using these methods can efficiently be incorporated into the finite element or finite difference analyses as material models. They may also be used as a quick check on solutions developed by more time consuming and in‐depth deterministic analyses.

Details

Engineering Computations, vol. 28 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 February 2012

Amir Hossein Alavi, Ali Mollahasani, Amir Hossein Gandomi and Jafar Boluori Bazaz

The purpose of this paper is to develop new constitutive models to predict the soil deformation moduli using multi expression programming (MEP). The soil deformation parameters…

Abstract

Purpose

The purpose of this paper is to develop new constitutive models to predict the soil deformation moduli using multi expression programming (MEP). The soil deformation parameters formulated are secant (Es) and reloading (Er) moduli.

Design/methodology/approach

MEP is a new branch of classical genetic programming. The models obtained using this method are developed upon a series of plate load tests conducted on different soil types. The best models are selected after developing and controlling several models with different combinations of the influencing parameters. The validation of the models is verified using several statistical criteria. For more verification, sensitivity and parametric analyses are carried out.

Findings

The results indicate that the proposed models give precise estimations of the soil deformation moduli. The Es prediction model provides considerably better results than the model developed for Er. The Es formulation outperforms several empirical models found in the literature. The validation phases confirm the efficiency of the models for their general application to the soil moduli estimation. In general, the derived models are suitable for fine‐grained soils.

Originality/value

These equations may be used by designers to check the general validity of the laboratory and field test results or to control the solutions developed by more in‐depth deterministic analyses.

Article
Publication date: 26 July 2013

Ehsan Shekarian and Alireza Fallahpour

The housing sector is one of the main sources of economic growth in both developing and developed countries. Although many methods for modeling house prices have been proposed…

Abstract

Purpose

The housing sector is one of the main sources of economic growth in both developing and developed countries. Although many methods for modeling house prices have been proposed, each has its own limitations. The present paper aims to propose gene expression programming (GEP) as a new approach for prediction of housing price.

Design/methodology/approach

This study introduces gene expression programming (GEP) as a new approach for predicting housing price. This is the first time that this metaheuristic method is used in the housing literature.

Findings

The housing price model based on the gene expression programming is compared with a least square regression model that is derived from a stepwise process. The results indicate that the GEP‐based model provides superior performance to the traditional regression.

Originality/value

Data used in this study is derived from the Household Income and Expenditure Survey (HIES) in Iran that is conducted by the Statistical Center of Iran (SCI). Housing price model is estimated by administering the questionnaires of this survey in Hamedan Province. To show the applicability of the derived model by GEP technique, it is verified applying parts of the data, namely test data sets that were not included in the modeling process.

Details

International Journal of Housing Markets and Analysis, vol. 6 no. 3
Type: Research Article
ISSN: 1753-8270

Keywords

Article
Publication date: 16 March 2020

Mostafa Rezvani Sharif and Seyed Mohammad Reza Sadri Tabaei Zavareh

The shear strength of reinforced concrete (RC) columns under cyclic lateral loading is a crucial concern, particularly, in the seismic design of RC structures. Considering the…

Abstract

Purpose

The shear strength of reinforced concrete (RC) columns under cyclic lateral loading is a crucial concern, particularly, in the seismic design of RC structures. Considering the costly procedure of testing methods for measuring the real value of the shear strength factor and the existence of several parameters impacting the system behavior, numerical modeling techniques have been very much appreciated by engineers and researchers. This study aims to propose a new model for estimation of the shear strength of cyclically loaded circular RC columns through a robust computational intelligence approach, namely, linear genetic programming (LGP).

Design/methodology/approach

LGP is a data-driven self-adaptive algorithm recently used for classification, pattern recognition and numerical modeling of engineering problems. A reliable database consisting of 64 experimental data is collected for the development of shear strength LGP models here. The obtained models are evaluated from both engineering and accuracy perspectives by means of several indicators and supplementary studies and the optimal model is presented for further purposes. Additionally, the capability of LGP is examined to be used as an alternative approach for the numerical analysis of engineering problems.

Findings

A new predictive model is proposed for the estimation of the shear strength of cyclically loaded circular RC columns using the LGP approach. To demonstrate the capability of the proposed model, the analysis results are compared to those obtained by some well-known models recommended in the existing literature. The results confirm the potential of the LGP approach for numerical analysis of engineering problems in addition to the fact that the obtained LGP model outperforms existing models in estimation and predictability.

Originality/value

This paper mainly represents the capability of the LGP approach as a robust alternative approach among existing analytical and numerical methods for modeling and analysis of relevant engineering approximation and estimation problems. The authors are confident that the shear strength model proposed can be used for design and pre-design aims. The authors also declare that they have no conflict of interest.

Details

Engineering Computations, vol. 37 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 January 2021

Ying-Ji Chuang and Hsing-Chih Tsai

This paper aims to use a derivative of genetic programming to predict the bond strength of glass fiber-reinforced polymer (GFRP) bars in concrete under the effects of design…

Abstract

Purpose

This paper aims to use a derivative of genetic programming to predict the bond strength of glass fiber-reinforced polymer (GFRP) bars in concrete under the effects of design guidelines. In developing bond strength prediction models, this paper prioritized simplicity and meaningfulness over extreme accuracy.

Design/methodology/approach

Assessing the bond strength of GFRP bars in concrete is a critical issue in designing and building reinforced concrete structures.

Findings

Ultimately, the equation of a linear form of a particular design guideline was suggested as the optimal prediction model. Improvements to the current design guidelines suggested by this model include setting a 1.31 magnification and considering the effects of the three significant parameters of bar diameter (db), minimum cover-to-bar diameter (C/db) and development length to bar diameter (l/db) under an acceptable root mean square error accuracy of around 2 MPa. Furthermore, the model suggests that the original influence parameter of concrete compressive strength (fc) may be removed from bond strength calculations.

Originality/value

The model suggests that the original influence parameter of concrete compressive strength (fc) may be removed from bond strength calculations.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 August 2019

Md Tanweer Ahmad and Sandeep Mondal

With the increasing competition among the industries, they remain under pressure as how to select the best set of suppliers for the competitive edge. Often, it has been…

Abstract

Purpose

With the increasing competition among the industries, they remain under pressure as how to select the best set of suppliers for the competitive edge. Often, it has been challenging to develop an effective set of suppliers due to varied and asymmetric mode of criteria. The purpose of this paper is to develop a responsive chain under original equipment manufacturer (OEM).

Design/methodology/approach

This study proposes a responsive chain under a two-echelon system (TES) of OEM, which needs to collaborate with a set of suppliers at each echelon through an integrated methodology of AHP and TOPSIS. According to the OEM’s criteria, demands and suppliers’ capacity vary with time, therefore they are not static for a longer period. Hence, supplier selection (SS) problem possesses dynamicity in real practice. For this, MILP is used for finding optimal order quantities based on the optimal ranking at each echelon in the multi-period scenario. Subsequently, sensitivity analysis (SA) is conducted through Taguchi method of parameter design (TMPD) to achieve an optimal ranking in the TES.

Findings

This study suggests optimal criteria’s weight, percentage contribution, and flexibility for the suppliers and manufacturers involving through maximum demand strategy at each echelon of OEM. It also provides robust group of suppliers and manufacturers in the TES through optimal ranking and simultaneously in the order allocations. Furthermore, it restricts the number of suppliers and manufactures at each echelon through proposed methodology to obtain the solution in a very short running time.

Originality/value

To validate this model, a real data set for the case of chain conveyor company is used. This adopted methodology can suggest the organization that how the approach should be implemented.

Details

Benchmarking: An International Journal, vol. 26 no. 8
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 5 May 2015

Ankit Garg, Akhil Garg, Wan-Huan Zhou, Kang Tai and M C Deo

For measuring the effect of crop root content on soil water retention curves (SWRC), a simulation approach (multi-gene genetic programming (MGGP)), which develops the model…

Abstract

Purpose

For measuring the effect of crop root content on soil water retention curves (SWRC), a simulation approach (multi-gene genetic programming (MGGP)), which develops the model structure and its coefficients automatically can be applied. However, it does not perform well due to two vital issues related to its generalization: inappropriate formulation procedure of the multi-gene model and the difficulty in model selection. The purpose of this paper is to propose a heuristic-based-MGGP (N-MGGP) to formulate the functional relationship between the water content and two input parameters (soil suction and volumetric crop root content).

Design/methodology/approach

A new simulation approach (heuristic-based-MGGP (N-MGGP)), was proposed to formulate the functional relationship between the water content and two input parameters (soil suction and volumetric crop root content). The proposed approach makes use of a statistical approach of stepwise regression and classification methods (Bayes naïve and artificial neural network (ANN)) to tackle the two issues. Simulated data obtained from the models was evaluated against the experimental data.

Findings

The performance of proposed approach was found to better than that of standardized MGGP. Sensitivity and parametric analysis conducted validates the robustness of model by unveiling dominant input parameters and hidden non-linear relationships.

Originality/value

To the best of authors’ knowledge, an empirical model is developed that measures the effect of crop root content on the SWRCs. The authors also proposed a new genetic programming approach in simulating the crop root content dependent SWRCs.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 November 2023

Yuling Ran, Wei Bai, Lingwei Kong, Henghui Fan, Xiujuan Yang and Xuemei Li

The purpose of this paper is to develop an appropriate machine learning model for predicting soil compaction degree while also examining the contribution rates of three…

Abstract

Purpose

The purpose of this paper is to develop an appropriate machine learning model for predicting soil compaction degree while also examining the contribution rates of three influential factors: moisture content, electrical conductivity and temperature, towards the prediction of soil compaction degree.

Design/methodology/approach

Taking fine-grained soil A and B as the research object, this paper utilized the laboratory test data, including compaction parameter (moisture content), electrical parameter (electrical conductivity) and temperature, to predict soil degree of compaction based on five types of commonly used machine learning models (19 models in total). According to the prediction results, these models were preliminarily compared and further evaluated.

Findings

The Gaussian process regression model has a good effect on the prediction of degree of compaction of the two kinds of soils: the error rates of the prediction of degree of compaction for fine-grained soil A and B are within 6 and 8%, respectively. As per the order, the contribution rates manifest as: moisture content > electrical conductivity >> temperature.

Originality/value

By using moisture content, electrical conductivity, temperature to predict the compaction degree directly, the predicted value of the compaction degree can be obtained with higher accuracy and the detection efficiency of the compaction degree can be improved.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 June 2020

Davood Darvishi, Sifeng Liu and Jeffrey Yi-Lin Forrest

The purpose of this paper is to survey and express the advantages and disadvantages of the existing approaches for solving grey linear programming in decision-making problems.

Abstract

Purpose

The purpose of this paper is to survey and express the advantages and disadvantages of the existing approaches for solving grey linear programming in decision-making problems.

Design/methodology/approach

After presenting the concepts of grey systems and grey numbers, this paper surveys existing approaches for solving grey linear programming problems and applications. Also, methods and approaches for solving grey linear programming are classified, and its advantages and disadvantages are expressed.

Findings

The progress of grey programming has been expressed from past to present. The main methods for solving the grey linear programming problem can be categorized as Best-Worst model, Confidence degree, Whitening parameters, Prediction model, Positioned solution, Genetic algorithm, Covered solution, Multi-objective, Simplex and dual theory methods. This survey investigates the developments of various solving grey programming methods and its applications.

Originality/value

Different methods for solving grey linear programming problems are presented, where each of them has disadvantages and advantages in providing results of grey linear programming problems. This study attempted to review papers published during 35 years (1985–2020) about grey linear programming solving and applications. The review also helps clarify the important advantages, disadvantages and distinctions between different approaches and algorithms such as weakness of solving linear programming with grey numbers in constraints, inappropriate results with the lower bound is greater than upper bound, out of feasible region solutions and so on.

Details

Grey Systems: Theory and Application, vol. 11 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 1 September 2005

Tsahat Oboulhas, Xiaofei Xu and Dechen Zhan

This paper aims to deal with the problem of multi‐plant purchase coordination in an assemble‐to‐order (ATO) environment, when volume discount schedules are provided by each of the…

Abstract

Purpose

This paper aims to deal with the problem of multi‐plant purchase coordination in an assemble‐to‐order (ATO) environment, when volume discount schedules are provided by each of the suppliers.

Design/methodology/approach

This paper uses linear programming and a multi‐agent system to coordinate multi‐plant purchasing activities in order to minimize the total purchasing cost.

Findings

An integrated linear programming model and multi‐agent approach is perfectly suited to the purchase coordination in multi‐plant organizations in order to achieve the global profit.

Originality/value

The proposed model provides an effective and efficient coordination mechanism that helps multi‐plant organization and suppliers to maintain the availability of materials in the right quantity, with the right quality and at minimum possible cost.

Details

Journal of Manufacturing Technology Management, vol. 16 no. 6
Type: Research Article
ISSN: 1741-038X

Keywords

1 – 10 of over 16000