Search results

1 – 10 of 353
Article
Publication date: 8 November 2021

Xinxin Fu, Yanjun Chen, Minggang Sun and Tengjiang Yu

The service performance for colored asphalt pavement is inevitably affected by the addition of different colorants, especially the challenge of low temperature environment in cold…

Abstract

Purpose

The service performance for colored asphalt pavement is inevitably affected by the addition of different colorants, especially the challenge of low temperature environment in cold regions. Therefore, the purpose of study is to explore the effects of different colorants on the service performance for colored asphalt pavement and to provide a foundation for improving the applicability of colored asphalt pavement in cold regions.

Design/methodology/approach

In the study, three kinds of colorants (iron oxide red, iron oxide yellow, iron oxide green) were used to compare the influence of different colorants amounts and different colorants kinds on the service performance for colored asphalt pavement in cold regions. According to the characteristics of low temperature in cold regions, the effects of different colorants on the low temperature performance for colored asphalt pavement were studied.

Findings

The study shows that different colorants have different effects on the service performance of colored asphalt pavement. The high temperature performance increases with the increase of the colorants amount, but the low temperature performance is opposite. Additionally, the yellow colored asphalt pavement has more advantages of low temperature adaptation than the red and green colored asphalt pavement.

Originality/value

The study results provide a certain theoretical foundation for the application of colored asphalt pavement in cold regions and have certain value and significance for the further development of colored asphalt pavement.

Details

Pigment & Resin Technology, vol. 51 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 August 2021

Tengjiang Yu, Haitao Zhang, Junfeng Sun, Yabo Wang, Shuang Huang and Dan Chen

Using typical structure of asphalt pavement in Harbin area of China, and the formula of generalized friction coefficient between base and surface layers of asphalt pavement in…

Abstract

Purpose

Using typical structure of asphalt pavement in Harbin area of China, and the formula of generalized friction coefficient between base and surface layers of asphalt pavement in cold area is established.

Design/methodology/approach

Through structural characteristics analysis of asphalt pavement in cold area, the generalized formula of friction coefficient between base and surface layers of asphalt pavement in cold area is derived. The formula can quickly calculate the friction coefficient between layers of asphalt pavement.

Findings

Based on quantitative analysis to the contacting state between layers of asphalt pavement in cold area, the relationships between generalized friction coefficient and resilient modulus of asphalt mixtures, temperature shrinkage coefficient and temperature have been established.

Originality/value

The findings can enrich the description methods about the contacting state between layers of asphalt pavement, and have a certain theoretical and practical value. Through the application of the formula of generalized friction coefficient between layers, it can provide a technical basis for the asphalt pavement design, construction and maintenance in cold area.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 12 June 2017

Rudi van Staden and Sam Fragomeni

This research aims to use the finite element method to examine critical distress modes in the pavement layers due to changes in the structural properties brought upon by fire…

Abstract

Purpose

This research aims to use the finite element method to examine critical distress modes in the pavement layers due to changes in the structural properties brought upon by fire damage.

Design/methodology/approach

A full dynamic analysis is performed to replicate heavy vehicle axle wheel loads travelling over a pavement section.

Findings

Results show a 72 per cent decrease in the number of load repetitions which a fire-damaged pavement can experience before fatigue cracking of the asphalt. Further, there is a 51 per cent decrease in loading cycles of the subgrade before rutting of the fire-damaged system.

Originality/value

Fatigue of asphalt and deformation of subgrade from repeated vehicular loading are the most common failure mechanisms, and major attributors to pavement maintenance and rehabilitation costs. Pavement analysis has always been concentrated on evaluating deterioration under regularly occurring operational conditions. However, the impact of one-off events, such as vehicle petroleum fires, has not been evaluated for the effects on deterioration.

Details

Journal of Structural Fire Engineering, vol. 8 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 2 October 2017

Kabiru Abdullahi Ahmad, Mohd Ezree Abdullah, Norhidayah Abdul Hassan, Hussaini Ahmad Daura and Kamarudin Ambak

Porous asphalt has been used for than 50 years, but it was originally developed in 1970 at Franklin institute in Philadelphia, Pennsylvania. By 1974 the first formalized procedure…

1329

Abstract

Purpose

Porous asphalt has been used for than 50 years, but it was originally developed in 1970 at Franklin institute in Philadelphia, Pennsylvania. By 1974 the first formalized procedure was created by the federal highway administration to design mixtures. Many researches on porous asphalt mixture have been conducted for the past two decades. However, there remains some concern about the potential adverse impacts of infiltrated surface water on the underlying groundwater. The purpose of this paper is to presents a short review on the application of porous asphalt pavement stormwater treatment.

Design/methodology/approach

In this paper, a critical review on history and benefits is presented followed by review of general studies of using porous asphalt pavement, and some recent scientific studies that examine potential contamination of soil and groundwater because of infiltration systems.

Findings

This paper indicates that porous asphalt pavement is more efficient than conventional pavements in terms of retaining pollutants, improving the quality of water and runoff while maintaining infiltration.

Originality/value

This paper may also help reduce land consumption by reducing the need for traditional storm-water management structures. However, on the other hand, the priority objectives which is minimizing increased flooding and pollution risks while increasing performance efficiency and enhancing local environmental quality-of-life is achieved.

Details

World Journal of Engineering, vol. 14 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 December 2020

Mohamed Marzouk and Mohamed Moustafa Ashmawy

Highways are one of the most critical infrastructure projects with strategic impact on the countries’ development. Asphalt has been historically the main pavement material used in…

Abstract

Purpose

Highways are one of the most critical infrastructure projects with strategic impact on the countries’ development. Asphalt has been historically the main pavement material used in all highway projects, especially in Egypt. However, with the booming in concrete technology in the past two decades, concrete has become a strong rival to asphalt, especially in highway applications. Several factors impact the decision-making criteria for any highway, which differ according to the priorities and requirements of each decision-maker and the nature of the project.

Design/methodology/approach

This research focuses on studying and analyzing the different factors that impact the decision for selecting the material type for highways in Egypt’s pavement construction industry. The outputs of the analysis are then incorporated into a multi-decision-making tool to assess the optimum solution as per the priorities of the decision-maker. A holistic framework is developed to compare asphalt and concrete pavements solutions considering; initial cost, maintenance cost on the life cycle, construction duration, embodied energy and fuel consumption. The data collection on local highways was performed through interviewing and surveying experts in the consulting, contracting and building materials fields (total of 15 respondents).

Findings

A multi-decision-making tool developed using the superiority and inferiority ranking method for selecting the best alternate. To illustrate the practicality of the proposed framework, a case study for assessment and validation has been done on Sokhna–Quarries highway in Egypt. The framework results reveal that despite a lower initial cost and faster construction of asphalt, concrete pavement is more cost-efficient on the lifecycle time. The multi-decision-making model indicates that concrete is a better alternate for highway applications given the cost, time and energy factors considered.

Originality/value

The proposed model takes into consideration the important parameters in selecting the type of pavement to be constructed considering two alternates asphalt and concrete.

Article
Publication date: 10 September 2021

Junfeng Sun, Haitao Zhang, Guangyuan Wu, Zuoqiang Liu, Yuping Feng and Minghao Jia

In order to give full play to the function of noise reduction of asphalt pavement, it is necessary to understand its internal sound absorption mechanism. Therefore, the purpose of…

Abstract

Purpose

In order to give full play to the function of noise reduction of asphalt pavement, it is necessary to understand its internal sound absorption mechanism. Therefore, the purpose of this study is to establish a micro model of the pore structure of asphalt mixture with the help of finite element method (FEM), discuss the noise reduction mechanism of asphalt pavement from the micro perspective and analyze and evaluate the noise attenuation law of the pore structure.

Design/methodology/approach

The FEM was used to establish the microscopic model of the pore structure of asphalt mixture. Based on the principle of acoustics, the noise reduction characteristics of asphalt pavement were simulated. The influence of gradation and pore characteristics on the noise reduction performance of asphalt pavement was analyzed.

Findings

The results show that the open graded friction course-13 (OGFC-13) has excellent performance in noise reduction. The resonant sound absorption structure composed of its large porosity can effectively reduce the pavement noise. For asphalt concrete-13 (AC-13) and stone matrix asphalt-13 (SMA-13), the less resonant sound absorption structure makes them have poor sound absorption effect. In addition, the variation rules of noise transmission loss (TL) curve and sound absorption coefficient curve of three graded asphalt mixtures were obtained. At the same time, the peak noise reduction values of OGFC-13, AC-13 and SMA-13 were obtained, which were 650Hz, 1000Hz and 800Hz, respectively.

Originality/value

The results show that the simulation results can well reflect and express the experimental results. This will provide a reference for further exploring the sound absorption mechanism and its variation rule of porous asphalt pavement. It also has some positive significance for the application of low noise asphalt pavement.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Abstract

Details

The Handbook of Road Safety Measures
Type: Book
ISBN: 978-1-84855-250-0

Book part
Publication date: 5 August 2015

Tony Kazda and Bob Caves

Abstract

Details

Airport Design and Operation
Type: Book
ISBN: 978-1-78441-869-4

Article
Publication date: 23 March 2020

Hongchang Wang, Cheng Jin, Houyu Liu and Zhiqiang Xue

As an important part of steel bridge deck pavement, if waterproof adhesive layer performance does not meet requirements, numerous kinds of bridge deck pavement distress may be…

Abstract

Purpose

As an important part of steel bridge deck pavement, if waterproof adhesive layer performance does not meet requirements, numerous kinds of bridge deck pavement distress may be encountered. To study the adhesive behavior of rubber asphalt waterproof adhesive layers in steel bridge gussasphalt pavement, the pull-off and direct-shear tests have been used in the study to mechanically simulate steel bridge deck pavement under vehicles loading.

Design/methodology/approach

Several potentially influential factors associated with the adhesive strength of rubber asphalt are investigated including temperature, spraying quantity and environmental conditions.

Findings

Results indicate that rubber asphalt was associated with good performance with respect to its use as a waterproof adhesive layer; simulated performance was negatively correlated with increasing temperatures. A necessary spraying quantity of 0.4 Lm-2 is required for appropriate adhesive strength of the composite structure, with a decrease in adhesive strength noted when spraying quantity is significantly greater or less than this.

Originality/value

The current paper presents an examination of the adhesive performance of a rubber asphalt adhesive layer on steel bridge deck pouring construction, while additionally examining potentially influential factors and conditions via use of both pull-off and shear tests.

Details

International Journal of Structural Integrity, vol. 12 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 29 November 2021

Guangyuan Wu, Haitao Zhang, Junfeng Sun and Tengjiang Yu

In order to evaluate the rheological properties of asphalt more comprehensively and effectively, and to explore and discuss the practicability of relevant models in the evaluation…

Abstract

Purpose

In order to evaluate the rheological properties of asphalt more comprehensively and effectively, and to explore and discuss the practicability of relevant models in the evaluation of the rheological properties of asphalt.

Design/methodology/approach

Based on the rheological and viscoelastic theories, temperature scanning, frequency scanning and multiple stress creep recovery (MSCR) tests of different modified asphalt were carried out by dynamic shear rheometer (DSR) to obtain relevant viscoelastic parameters and evaluate the high temperature properties of different modified asphalt. Based on the time-temperature equivalence principle, the main curve was constructed to study the viscoelastic properties of asphalt in a wider frequency domain. The main curve was fitted with the CAM model, and the rheological properties of different modified asphalt were evaluated through the analysis of model parameters. The creep stiffness and creep velocity of different modified asphalt were obtained through the rheological test of bending beam (BBR), and the low-temperature performance of different modified asphalt was analyzed by using Burgers model to fit the creep compliance.

Findings

The results show that the high temperature rheological properties of several modified asphalt studied in the test are ranked from best to worst as follows: PE modified asphalt > SBS modified asphalt > SBR modified asphalt. Short-term aging can improve the high temperature performance of asphalt, and different types of modifiers can promote or inhibit this improvement effect. Based on BBR test and Burgers model fitting analysis, SBR modified asphalt has the best low temperature performance, followed by SBS modified asphalt, while PE modified asphalt has poor low temperature performance, so it is not suitable to be used as road material in low temperature area.

Originality/value

Combined with effective evaluation methods, the rheological properties of asphalt at different temperatures and angles were systematically evaluated, and the evolution of rheological properties of asphalt characterized by model parameters was further analyzed by advanced model simulation.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 353