Search results

1 – 10 of 37
Article
Publication date: 1 September 1987

Lerinda Luecking Frost

A new technology for producing light‐control thin films has been developed by physicists at the GM Research Laboratories (GMR). This new class of films — the GMR version of which…

Abstract

A new technology for producing light‐control thin films has been developed by physicists at the GM Research Laboratories (GMR). This new class of films — the GMR version of which is known as Varilux — consists of submicron liquid crystal droplets dispersed in a polymer.

Details

Pigment & Resin Technology, vol. 16 no. 9
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 13 March 2017

Lubomir Krabac, Vladimir Pejaković, Vladislav Drinek, Nicole Dörr and Ewald Badisch

The purpose of this paper is to study the friction and wear behavior of germanium (Ge) thin films deposited by low-pressure chemical vapor deposition method on a chromium…

106

Abstract

Purpose

The purpose of this paper is to study the friction and wear behavior of germanium (Ge) thin films deposited by low-pressure chemical vapor deposition method on a chromium (Cr)-nickel (Ni) stainless steel substrate after being exposed to relatively mild sliding conditions (low loads and sliding distances).

Design/methodology/approach

Wear and friction experiments were conducted with a 100Cr6 steel ball sliding against flat Ge thin-film-coated stainless steel sheets (ball-on-flat microtribometer, no lubricant, normal loads of 50-100 mN, initial Hertzian contact pressures of 385-485 MPa, total sliding distance up to 200 mm and room temperature).

Findings

Scanning electron microscopy results revealed that prepared Ge thin films consisted of two different morphologies: curved nanowires and cone-shaped nano-/microdroplets. Regarding friction and wear characteristics of the investigated samples, the substrates coated with Ge thin films did not affect the coefficient of friction significantly by load. The wear of the base material (Cr-Ni stainless steel) was not observed under the mentioned experimental conditions (see the “Design/methodology/approach” section); however, with increased sliding distance and/or applied load, a rupture of the Ge film and an exposure of the stainless steel substrate to the 100Cr6 ball can be expected. Furthermore, the observations suggest that the smearing of Ge nano- and microstructures, plastically deformed during tribotesting, over the surface exposed to the sliding contact is the dominant tribological process.

Originality/value

For the first time, the tribological interaction between Ge thin film and steel surface was investigated under dry sliding conditions using a ball-on-flat microtribometer, and the obtained results provide a useful base for the further research on tribology of Ge-based thin films.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 4 July 2022

Kai Zhuang, Jieru Xiao and Xiaolong Yang

The purpose of this paper is to show that the droplet impact phenomenon is important for the advancement of industrial technologies in many fields such as spray cooling and ink…

Abstract

Purpose

The purpose of this paper is to show that the droplet impact phenomenon is important for the advancement of industrial technologies in many fields such as spray cooling and ink jet printing. Droplet bouncing on the nonwetting surfaces is a special phenomenon in the impact process which has attracted lots of attention.

Design/methodology/approach

In this work, the authors fabricated two kinds of representative nonwetting surfaces including superhydrophobic surfaces (SHS) and a slippery liquid-infused porous surface (SLIPS) with advanced UV laser processing.

Findings

The droplet bouncing behavior on the two kinds of nonwetting surfaces were compared in the experiments. The results indicate that the increasing Weber number enlarges the maximum droplet spreading diameter and raises the droplet bounce height but has no effect on contact time.

Originality/value

In addition, the authors find that the topological SHS and SLIPS with the laser-processed microwedge groove array produce asymmetric droplet bouncing with opposite offset direction. Microdroplets can be continuously transported without any additional driving force on such a topological SLIPS. The promising method for manipulating droplets has potential applications for the droplet-based microfluidic platforms.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 19 July 2019

Feng Cheng, Weixi Ji and Junhua Zhao

The disbonding of DLC coating is a main failure mode in the high-speed cavitation condition, which shortens the service life of the bearing. This study aims to investigate…

Abstract

Purpose

The disbonding of DLC coating is a main failure mode in the high-speed cavitation condition, which shortens the service life of the bearing. This study aims to investigate influence of adhesion strength on cavitation erosion resistance of DLC coating.

Design/methodology/approach

Three DLC coatings with different adhesion strengths were grown on the 304 steel surfaces by using a cathodic arc plasma deposition method. Cavitation tests were performed by using a vibratory test rig to investigate the influence of adhesion strength on cavitation erosion resistance of a DLC coating. The cavitation mechanism of the substrate-coating systems was further discussed by means of surface analyses.

Findings

The results indicated that, the residual stress decreased and then increased with the increasing DLC coating thickness from 1 µm to 2.9 µm, and the lower residual stress can improve the adhesion strength of the DLC coating to the substrate. It was also concluded that, the plastic deformation as well as the fracture occurred on the DLC coating surface at the same time, owing to higher residual stress and poorer adhesion strength. However, lower residual stress and better adhesion strength could help resist the occurrence of the coating fracture.

Originality/value

Cavitation tests were performed by using a vibratory test rig to investigate the influence of adhesion strength on cavitation erosion resistance of the DLC coating. The plastic deformation and the fracture occurred on the DLC coating surface at the same time, owing to higher residual stress and poorer adhesion of coating. Lower residual stress and better adhesion of coating could resist the occurrence of the DLC coating fracture.

Details

Industrial Lubrication and Tribology, vol. 71 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 September 2019

Xin Wang, Bo Xu and Z. Chen

This paper aims to investigate spontaneous movement of single droplet on chemically heterogeneous surfaces induced by the net surface tension, using the improved three-dimensional…

Abstract

Purpose

This paper aims to investigate spontaneous movement of single droplet on chemically heterogeneous surfaces induced by the net surface tension, using the improved three-dimensional (3D) lattice Boltzmann (LB) method.

Design/methodology/approach

D3Q19 Shan-Chen LB model is improved in this paper. Segmented particle distribution functions coupled with the P-R equation of state are introduced to maintain the higher accuracy and greater stability. In addition, exact difference method (EDM) is adopted to implement force term to predict the droplet deformation and dynamics.

Findings

The numerical results demonstrate that spontaneous movement of single droplet (=1.8 µm) along wedge-shaped tracks is driven by net surface tension. Advancing angle decreases instantaneously with time, while receding angle changes slightly first and then decreases rapidly. Wetting length is affected by vertex angle and wetting difference, whereas the final value is only dependent on the stronger wettability. Although the velocity of single droplet on wedge-shaped tracks can be increased by the larger vertex angle, it has a negative influence on the displacement. For the same wetting difference, vertex angle equal to 30º is an optimization strategy in this model. If the simulation length is extended enough, then the smaller vertex angle is beneficial for the droplet movement. In addition, a larger wetting difference is beneficial to spontaneous movement, which can speed up the droplet movement.

Originality/value

The proposed numerical model of droplet dynamics on chemically heterogeneous surfaces provides fundamental insights for the enhancement of drop-wise condensation heat transfer.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 October 2022

Zhe Liu, Hao Wei, Li Chen, Haihang Cui and Bohua Sun

The purpose of this study is to establish an effective numerical simulation method to describe the flow pattern and optimize the strategy of noncontact mixing induced by…

Abstract

Purpose

The purpose of this study is to establish an effective numerical simulation method to describe the flow pattern and optimize the strategy of noncontact mixing induced by alternating Gaussian light inside a nanofluid droplet and analyzing the influencing factors and flow mechanism of fluid mixing inside a droplet.

Design/methodology/approach

First, the heat converted by the alternating incident Gaussian light acting on the nanoparticles was considered as the bulk heat source distribution, and the equilibrium equation between the surface tension and the viscous force at the upper boundary force was established; then, the numerical simulation methods for multiple-physical-field coupling was established, and the mixing index was used to quantify the mixing degree inside a droplet. The effects of the incident position of alternating Gaussian light and the height of the droplet on the mixing characteristics inside a droplet were studied. Finally, the nondimensional Marangoni number was used to reveal the flow mechanism of the internal mixing of the droplet.

Findings

Noncontact alternating Gaussian light can induce asymmetric vortex motion inside a nanofluid droplet. The incident position of alternating Gaussian light is a significant factor affecting the mixing degree in the droplet. In addition, the heat transfer caused by the surface tension gradient promotes the convection effect, which significantly enhances the mixing of the fluid in the droplet.

Originality/value

This study demonstrates the possibility of the chaotic mixing phenomenon induced by noncontact Gaussian light that occurs within a tiny droplet and provides a feasible method to achieve efficient mixing inside droplets at the microscale.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 January 2020

Sathies T., Senthil P. and Anoop M.S.

Fabrication of customized products in low volume through conventional manufacturing incurs a high cost, longer processing time and huge material waste. Hence, the concept of…

1496

Abstract

Purpose

Fabrication of customized products in low volume through conventional manufacturing incurs a high cost, longer processing time and huge material waste. Hence, the concept of additive manufacturing (AM) comes into existence and fused deposition modelling (FDM), is at the forefront of researches related to polymer-based additive manufacturing. The purpose of this paper is to summarize the research works carried on the applications of FDM.

Design/methodology/approach

In the present paper, an extensive review has been performed related to major application areas (such as a sensor, shielding, scaffolding, drug delivery devices, microfluidic devices, rapid tooling, four-dimensional printing, automotive and aerospace, prosthetics and orthosis, fashion and architecture) where FDM has been tested. Finally, a roadmap for future research work in the FDM application has been discussed. As an example for future research scope, a case study on the usage of FDM printed ABS-carbon black composite for solvent sensing is demonstrated.

Findings

The printability of composite filament through FDM enhanced its application range. Sensors developed using FDM incurs a low cost and produces a result comparable to those conventional techniques. EMI shielding manufactured by FDM is light and non-oxidative. Biodegradable and biocompatible scaffolds of complex shapes are possible to manufacture by FDM. Further, FDM enables the fabrication of on-demand and customized prosthetics and orthosis. Tooling time and cost involved in the manufacturing of low volume customized products are reduced by FDM based rapid tooling technique. Results of the solvent sensing case study indicate that three-dimensional printed conductive polymer composites can sense different solvents. The sensors with a lower thickness (0.6 mm) exhibit better sensitivity.

Originality/value

This paper outlines the capabilities of FDM and provides information to the user about the different applications possible with FDM.

Details

Rapid Prototyping Journal, vol. 26 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 June 2012

Juan Pablo Isaza and Alba Avila

Deposition of ink containing metal particles is possible using inkjet technologies. The purpose of this paper is to show a novel method for deposition of iron microparticles, with…

Abstract

Purpose

Deposition of ink containing metal particles is possible using inkjet technologies. The purpose of this paper is to show a novel method for deposition of iron microparticles, with an average diameter of 1.24 μm, on a glass substrate that can potentially achieve concentrations of 0.21 per cent or higher.

Design/methodology/approach

The method combines drop‐on‐demand (DOD) technology with a creative way of positioning iron microparticles near to the nozzle's print head. The use of ferromagnetic particles allows the control of particle dispersion on the target sample surface. The particles are positioned close to the nozzle using a sharpened steel rod as holder and their alignment is controlled by generating an external magnetic field along the sharpened steel rod.

Findings

Successful deposition of iron microparticles with a potential concentration of 0.21 per cent or higher is reported.

Research limitations/implications

The implemented method is restricted to ferromagnetic particles or alloys of ferromagnetic and non‐ferromagnetic materials.

Practical implications

The method described could be integrated to control the deposition of iron microparticles in the production of optoelectronic devices and biosensors. This method speeds up the deposition process due to the higher metal microparticle concentrations achieved.

Originality/value

The deposition method introduced in the paper reached concentrations of 0.084 per cent, similar to the highest concentrations (0.1 per cent) reported with conventional methods (inkjet inks containing metal nanoparticles). It also prevents the blocking of the print head nozzles, thus improving the efficiency of Fe particle deposition.

Details

Rapid Prototyping Journal, vol. 18 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 March 2021

Zhiheng Zhao, Ray Y. Zhong, Yong-Hong Kuo, Yelin Fu and G.Q. Huang

Physical gatherings at social events have been found as one of the main causes of COVID-19 transmission all over the world. Smartphone has been used for contact tracing by…

Abstract

Purpose

Physical gatherings at social events have been found as one of the main causes of COVID-19 transmission all over the world. Smartphone has been used for contact tracing by exchanging messages through Bluetooth signals. However, recent confirmed cases found in venues indicated that indirect transmission of the causative virus occurred, resulting from virus contamination of common objects, virus aerosolization in a confined space or spread from inadequate ventilation environment with no indication of human direct or close contact observed.

Design/methodology/approach

This paper presents a novel cyber-physical architecture for spatial temporal analytics (iGather for short). Locations with time windows are modeled as digital chromosomes in cyberspace to represent human activity instances in the physical world.

Findings

Results show that the high spatial temporal correlated but indirect tracing can be realized through the deployment of physical hardware and spatial temporal analytics including mobility and traceability analytics. iGather is tested and verified in different spatial temporal correlated cases. From a management perspective of mobilizing social capacity, the venue plays not only a promotion role in boosting the utilization rates but also a supervision-assisted role for keeping the venue in a safe and healthy situation.

Social implications

This research is of particular significance when physical distancing measures are being relaxed with situations gradually become contained. iGather is able to help the general public to ease open questions: Is a venue safe enough? Is there anyone at a gathering at risk? What should one do when someone gets infected without raising privacy issues?

Originality/value

This study contributes to the existing literature by cyber-physical spatial temporal analytics to trace COVID-19 indirect contacts through digital chromosome, a representation of digital twin technology. Also, the authors have proposed a venue-oriented management perspective to resolve privacy-preserving and unitization rate concerns.

Details

Industrial Management & Data Systems, vol. 121 no. 5
Type: Research Article
ISSN: 0263-5577

Keywords

Executive summary
Publication date: 8 July 2020

INT: Airborne spread of virus would affect indoor life

Details

DOI: 10.1108/OXAN-ES253780

ISSN: 2633-304X

Keywords

Geographic
Topical
1 – 10 of 37