Search results

1 – 10 of over 2000
Article
Publication date: 7 August 2007

S.H. Masood

This paper seeks to present an investigation on building controlled drug delivery device (DDD) matrix using fused deposition modelling (FDM) rapid prototyping (RP) process. The…

1546

Abstract

Purpose

This paper seeks to present an investigation on building controlled drug delivery device (DDD) matrix using fused deposition modelling (FDM) rapid prototyping (RP) process. The focus of the study is on the effect of FDM fabricated macro‐features of reservoir‐matrix DDD models on the drug release rates through the diffusion process.

Design/methodology/approach

Using various parameters involved with FDM, polymeric DDD matrices with different macro‐features are designed and fabricated on the FDM3000 machine. Experiments are conducted to study the release characteristics and porosity of the fabricated models with a model drug and to see how they are affected by FDM build parameters.

Findings

Experimental results show that FDM parameters, raster gap and raster angle, play significant roles in controlling the structure and drug release characteristics of the FDM fabricated DDDs. The experimental observations reveal that appropriate FDM parameters can be selected to fabricate controlled DDD device with desired release rate of drug and the desired period of operation of the device.

Originality/value

The paper introduces a novel application of FDM RP system in the development and fabrication of polymeric controlled DDDs. The controlled release of drugs is an important area in which RP techniques can be successfully used in developing models of release matrix for DDDs with added benefits of accuracy, uniformity and low costs compared with conventional methods.

Details

Assembly Automation, vol. 27 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 28 January 2020

Sathies T., Senthil P. and Anoop M.S.

Fabrication of customized products in low volume through conventional manufacturing incurs a high cost, longer processing time and huge material waste. Hence, the concept of…

1494

Abstract

Purpose

Fabrication of customized products in low volume through conventional manufacturing incurs a high cost, longer processing time and huge material waste. Hence, the concept of additive manufacturing (AM) comes into existence and fused deposition modelling (FDM), is at the forefront of researches related to polymer-based additive manufacturing. The purpose of this paper is to summarize the research works carried on the applications of FDM.

Design/methodology/approach

In the present paper, an extensive review has been performed related to major application areas (such as a sensor, shielding, scaffolding, drug delivery devices, microfluidic devices, rapid tooling, four-dimensional printing, automotive and aerospace, prosthetics and orthosis, fashion and architecture) where FDM has been tested. Finally, a roadmap for future research work in the FDM application has been discussed. As an example for future research scope, a case study on the usage of FDM printed ABS-carbon black composite for solvent sensing is demonstrated.

Findings

The printability of composite filament through FDM enhanced its application range. Sensors developed using FDM incurs a low cost and produces a result comparable to those conventional techniques. EMI shielding manufactured by FDM is light and non-oxidative. Biodegradable and biocompatible scaffolds of complex shapes are possible to manufacture by FDM. Further, FDM enables the fabrication of on-demand and customized prosthetics and orthosis. Tooling time and cost involved in the manufacturing of low volume customized products are reduced by FDM based rapid tooling technique. Results of the solvent sensing case study indicate that three-dimensional printed conductive polymer composites can sense different solvents. The sensors with a lower thickness (0.6 mm) exhibit better sensitivity.

Originality/value

This paper outlines the capabilities of FDM and provides information to the user about the different applications possible with FDM.

Details

Rapid Prototyping Journal, vol. 26 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 2001

K.H. Low, K.F. Leong, C.K. Chua, Z.H. Du and C.M. Cheah

There are many applications for rapid prototyping systems and application in the biomedical field is an important domain. Uses selective laser sintering (SLS) in this study to…

1998

Abstract

There are many applications for rapid prototyping systems and application in the biomedical field is an important domain. Uses selective laser sintering (SLS) in this study to build porous cylindrical disc matrices for use as drug delivery devices (DDD). Studies the part‐bed temperature to ascertain its influence over the porosity of the disc matrices. They are found to have an inverse linear relationship. Also investigates the dense walls, the inherent consequences of building porous structures with the SLS, in the disc matrix as they have a direct impact on the performance of the DDD. Discusses the size constraint of the disc matrix due to the limitations of the SLS process. Also investigates the possibility of creating disc matrices of varying porosity. Experimental results demonstrate that SLS is viable in producing DDDs that have variable porosity and micro‐features.

Details

Rapid Prototyping Journal, vol. 7 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 March 2015

Amin TermehYousefi, Samira Bagheri and Nahrizul Adib

Biotechnology is closely associated to microfluidics. During the last decade, designs of microfluidic devices such as geometries and scales have been modified and improved…

1304

Abstract

Purpose

Biotechnology is closely associated to microfluidics. During the last decade, designs of microfluidic devices such as geometries and scales have been modified and improved according to the applications for better performance. Numerous sensor technologies existing in the industry has potential use for clinical applications. Fabrication techniques of microfluidics initially rooted from the electromechanical systems (EMS) technology.

Design/methodology/approach

In this review, we emphasized on the most available manufacture approaches to fabricate microchannels, their applications and the properties which make them unique components in biological studies.

Findings

Major fundamental and technological advances demonstrate the enhancing of capabilities and improving the reliability of biosensors based on microfluidic. Several researchers have been reported verity of methods to fabricate different devices based on EMS technology due to the electroconductivity properties and their small size of them. Therefore, controlled fabrication method of MEMS plays an important role to design and fabricate a highly selective detection of medical devices in a variety of biological fluids. Stable, tight and reliable monitoring devices for biological components still remains a massive challenge and several studies focused on MEMS to fabricate simple and easy monitoring devices.

Originality/value

This paper is not submitted or under review in any other journal.

Details

Sensor Review, vol. 35 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 29 February 2008

Laura Eselius, Mohan Nimmagadda, Ajit Kambil, R.T. (Terry) Hisey and John Rhodes

Convergence in the life sciences and health care industries – the combining of two or more of drugs, diagnostics and devices to create an improved health care product – is leading

1563

Abstract

Purpose

Convergence in the life sciences and health care industries – the combining of two or more of drugs, diagnostics and devices to create an improved health care product – is leading to new opportunities for business growth and product differentiation. This report aims to examine the issues around convergence, including the drivers, risks and regulatory issues.

Design/methodology/approach

This report is based on industry and literature reviews and builds on research carried out by Deloitte Research on the life sciences and health care industry.

Findings

The paper finds that technological advances, evolving health care needs and shifting market conditions are creating favourable conditions for convergence. Developing convergent technologies, however, has risks and uncertainties that life sciences companies need to consider along with regulatory issues. Cross‐sector partnerships are becoming more of a necessity and reality for health care firms, who have to be aware of the many operational and ownership issues involved.

Practical implications

Market pressures and opportunities are motivating life sciences firms of all types and sizes to invest in convergence. Convergent technology is transforming cardiovascular care, orthopedic treatment, tissue wound management and other clinical areas by creating solutions that are less invasive, less painful, more patient‐specific, more convenient and sometimes more affordable. Consequently, players from all sectors are entering the competition for R&D assets, setting up new rivalries and alliances.

Originality/value

In mapping the many factors surrounding convergence in the life sciences industry, this report enables firms to evaluate their own opportunities and priorities. It proposes a framework that companies can use to decide which pathway to convergence is best for them.

Details

Journal of Business Strategy, vol. 29 no. 2
Type: Research Article
ISSN: 0275-6668

Keywords

Article
Publication date: 9 March 2010

Florencia Edith Wiria, Novella Sudarmadji, Kah Fai Leong, Chee Kai Chua, E. Wei Chng and Chian Chai Chan

In recent years, selective laser sintering (SLS) has been used in the biomedical field, including building small‐scaled biomedical devices such as tissue engineering scaffolds and…

1233

Abstract

Purpose

In recent years, selective laser sintering (SLS) has been used in the biomedical field, including building small‐scaled biomedical devices such as tissue engineering scaffolds and drug delivery devices. A compact adaptation system for the SLS is needed to obtain a more effective and efficient way of sintering small‐scale prototypes so as to reduce powder wastage. Limitations of available smaller‐scale adaptation devices include the need of additional electrical supplies for the device. The purpose of this paper is to report the development of such a system to be mounted at the SLS part bed without any additional energy supply.

Design/methodology/approach

The compact adaptation device works on the concept of transferring the motion of the SLS part bed onto the part bed of the compact adaptation device. The device is an integrated attachment that is fixed onto the building platform of the SLS. The gear system of the device lifts the powder supply bed at both sides of the device simultaneously when the part bed at the center of the device is lowered. To further increase powder saving, an improved powder delivery system named alternative supply mechanism (ASM) is mounted on top of the roller to be coupled together with the compact adaptation device.

Findings

Powder saving up to 6.5 times compared to using full build version of the Sinterstation 2500 has been achieved by using the compact adaptation device. Furthermore, powder wastage has been reduced by 84 percent when using the ASM compared to the compact adaptation device alone.

Originality/value

The paper demonstrates the development and viability of adaptation devices for SLS to significantly reduce powder consumption by using solely mechanical means to build small parts without using external power supply.

Details

Rapid Prototyping Journal, vol. 16 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 2001

Waleed M. S. Al‐Shaqha and Mohamed Zairi

Institutional pharmaceutical services have widely evolved over the past 20‐30 years. Hospital pharmacy practice has changed from a profession concerned chiefly with the bulk…

3637

Abstract

Institutional pharmaceutical services have widely evolved over the past 20‐30 years. Hospital pharmacy practice has changed from a profession concerned chiefly with the bulk preparation and distribution of drug products to one centred on ensuring optimal drug therapy. Whereas hospital pharmacists were charged with maintaining large drug stock on nursing units, many of them now provide individualised patient therapies. The practice of hospital pharmacy has therefore become one encompassing all aspects of drug therapy, from the procurement of drugs and drug delivery devices, their preparation and distribution, to their most appropriate selection and use for each patient. Hospital pharmacy services have traditionally had little involvement at the key stages in patients’ hospital care. This leads to the conclusion that the model of clinical pharmacy practice adopted by many pharmacy department hospitals is no longer appropriate for the demands of today’s health‐care services. Reviews many new models proposed for clinical pharmacy practice including an integrated model for providing a pharmaceutical care management approach in the health‐care system. This model is a response to the failures of traditional drug therapy. It is primarily an idea about how health professionals and patient should integrate their work to obtain outcomes important to patients and clinicians.

Details

International Journal of Health Care Quality Assurance, vol. 14 no. 7
Type: Research Article
ISSN: 0952-6862

Keywords

Article
Publication date: 4 September 2019

Mohd Syahir Anwar Hamzah, Azhan Austad, Saiful Izwan Abd Razak and Nadirul Hasraf Mat Nayan

Over the years, electrical stimulation in drug delivery system holds particular interest in producing spatially and temporally controlled release mechanism. These systems helped…

Abstract

Purpose

Over the years, electrical stimulation in drug delivery system holds particular interest in producing spatially and temporally controlled release mechanism. These systems helped in localized doses drugs to be administrated and response efficiently at target site to achieve excellent healing effect in control microenvironment. Extensive research is needed in order to develop versatile electroactive biomaterials in the field of therapeutics applications. This paper aims to discuss this issue.

Design/methodology/approach

This work reports the development of polycaprolactone (PCL) electrospun coated with pectin/polyaniline (PANi) composite, which has been characterized and whose drug delivery application is ascertained. The composite has been characterized on its mechanical conductivity and wettability properties to evaluate best formulation. The analysis on morphological properties using scanning electron microscope (SEM) confirmed the formation of the dual-layer electro-responsive composite.

Findings

Among different formulations studied, the pectin/PANi composition (12 percent/3 percent) was found to be an optimized composition with ultimate tensile strength of 55.48±0.65 MPa and modulus strength of 63.30±0.43 MPa with 2.41×10–3 Scm−1 electrical percolation. The hydrophobic PCL electrospun reduced as coating material was introduced on top with optimum of 85.3 percent degree of swelling and water contact angle at 39.17±0.67°. SEM micrograph revealed strong interaction between dual-layer structures with interconnected porous of uniform fibers.

Originality/value

Overall, these data present a multiangle initial characterization of this novel dual-layer electro-responsive composite for applications in drug delivery. However, additional analysis should be performed in order to provide a clear verification as drug delivery scaffold.

Details

International Journal of Structural Integrity, vol. 10 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 November 2018

Nataraj Poomathi, Sunpreet Singh, Chander Prakash, Rajkumar V. Patil, P.T. Perumal, Veluchamy Amutha Barathi, Kalpattu K. Balasubramanian, Seeram Ramakrishna and N.U. Maheshwari

Bioprinting is a promising technology, which has gained a recent attention, for application in all aspects of human life and has specific advantages in different areas of…

Abstract

Purpose

Bioprinting is a promising technology, which has gained a recent attention, for application in all aspects of human life and has specific advantages in different areas of medicines, especially in ophthalmology. The three-dimensional (3D) printing tools have been widely used in different applications, from surgical planning procedures to 3D models for certain highly delicate organs (such as: eye and heart). The purpose of this paper is to review the dedicated research efforts that so far have been made to highlight applications of 3D printing in the field of ophthalmology.

Design/methodology/approach

In this paper, the state-of-the-art review has been summarized for bioprinters, biomaterials and methodologies adopted to cure eye diseases. This paper starts with fundamental discussions and gradually leads toward the summary and future trends by covering almost all the research insights. For better understanding of the readers, various tables and figures have also been incorporated.

Findings

The usages of bioprinted surgical models have shown to be helpful in shortening the time of operation and decreasing the risk of donor, and hence, it could boost certain surgical effects. This demonstrates the wide use of bioprinting to design more precise biological research models for research in broader range of applications such as in generating blood vessels and cardiac tissue. Although bioprinting has not created a significant impact in ophthalmology, in recent times, these technologies could be helpful in treating several ocular disorders in the near future.

Originality/value

This review work emphasizes the understanding of 3D printing technologies, in the light of which these can be applied in ophthalmology to achieve successful treatment of eye diseases.

Details

Rapid Prototyping Journal, vol. 25 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 February 2021

Erfan Rezvani Ghomi, Saeideh Kholghi Eshkalak, Sunpreet Singh, Amutha Chinnappan, Seeram Ramakrishna and Roger Narayan

The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning, manufacturing…

Abstract

Purpose

The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning, manufacturing of patient-specific implants and developing anatomical models. Although a wide range of thermoplastic polymers are available as 3DP feedstock, yet obtaining biocompatible and structurally integrated biomedical devices is still challenging owing to various technical issues.

Design/methodology/approach

Polyether ether ketone (PEEK) is an organic and biocompatible compound material that is recently being used to fabricate complex design geometries and patient-specific implants through 3DP. However, the thermal and rheological features of PEEK make it difficult to process through the 3DP technologies, for instance, fused filament fabrication. The present review paper presents a state-of-the-art literature review of the 3DP of PEEK for potential biomedical applications. In particular, a special emphasis has been given on the existing technical hurdles and possible technological and processing solutions for improving the printability of PEEK.

Findings

The reviewed literature highlighted that there exist numerous scientific and technical means which can be adopted for improving the quality features of the 3D-printed PEEK-based biomedical structures. The discussed technological innovations will help the 3DP system to enhance the layer adhesion strength, structural stability, as well as enable the printing of high-performance thermoplastics.

Originality/value

The content of the present manuscript will motivate young scholars and senior scientists to work in exploring high-performance thermoplastics for 3DP applications.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 2000