Books and journals Case studies Expert Briefings Open Access
Advanced search

Search results

1 – 10 of 741
To view the access options for this content please click here
Article
Publication date: 2 January 2020

Four-dimensional printing using fused-deposition modeling: a review

John Carrell, Garrett Gruss and Elizabeth Gomez

This paper aims to provide a review of four-dimensional (4D) printing using fused-deposition modeling (FDM). 4D printing is an emerging innovation in (three-dimensional…

HTML
PDF (3.4 MB)

Abstract

Purpose

This paper aims to provide a review of four-dimensional (4D) printing using fused-deposition modeling (FDM). 4D printing is an emerging innovation in (three-dimensional) 3D printing that encompasses active materials in the printing process to create not only a 3D object but also a 3D object that can perform an active function. FDM is the most accessible form of 3D printing. By providing a review of 4D printing with FDM, this paper has the potential in educating the many FDM 3D printers in an additional capability with 4D printing.

Design/methodology/approach

This is a review paper. The approach was to search for and review peer-reviewed papers and works concerning 4D printing using FDM. With this discussion of the shape memory effect, shape memory polymers and FDM were also made.

Findings

4D printing has become a burgeoning area in addivitive manufacturing research with many papers being produced within the past 3-5 years. This is especially true for 4D printing using FDM. The key findings from this review show the materials and material composites used for 4D printing with FDM and the limitations with 4D printing with FDM.

Research limitations/implications

Limitations to this paper are with the availability of papers for review. 4D printing is an emerging area of additive manufacturing research. While FDM is a predominant method of 3D printing, it is not a predominant method for 4D printing. This is because of the limitations of FDM, which can only print with thermoplastics. With the popularity of FDM and the emergence of 4D printing, however, this review paper will provide key resources for reference for users that may be interested in 4D printing and have access to a FDM printer.

Practical implications

Practically, FDM is the most popular method for 3D printing. Review of 4D printing using FDM will provide a necessary resource for FDM 3D printing users and researchers with a potential avenue for design, printing, training and actuation of active parts and mechanisms.

Social implications

Continuing with the popularity of FDM among 3D printing methods, a review paper like this can provide an initial and simple step into 4D printing for researchers. From continued research, the potential to engage general audiences becomes more likely, especially a general audience that has FDM printers. An increase in 4D printing could potentially lead to more designs and applications of 4D printed devices in impactful fields, such as biomedical, aerospace and sustainable engineering. Overall, the change and inclusion of technology from 4D printing could have a potential social impact that encourages the design and manufacture of such devices and the treatment of said devices to the public.

Originality/value

There are other 4D printing review papers available, but this paper is the only one that focuses specifically on FDM. Other review papers provide brief commentary on the different processes of 4D printing including FDM. With the specialization of 4D printing using FDM, a more in-depth commentary results in this paper. This will provide many FDM 3D printing users with additional knowledge that can spur more creative research in 4D printing. Further, this paper can provide the impetus for the practical use of 4D printing in more general and educational settings.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
DOI: https://doi.org/10.1108/RPJ-12-2018-0305
ISSN: 1355-2546

Keywords

  • Fused deposition modelling
  • 4D printing
  • Shape memory polymers

Content available
Article
Publication date: 3 April 2017

Intelligent materials: a review of applications in 4D printing

Xin Li, Jianzhong Shang and Zhuo Wang

The paper aims to promote the development of intelligent materials and the 4D printing technology by introducing recent advances and applications of additive layered…

Open Access
HTML
PDF (3.9 MB)

Abstract

Purpose

The paper aims to promote the development of intelligent materials and the 4D printing technology by introducing recent advances and applications of additive layered manufacturing (ALM) technology of intelligent materials and the development of the 4D printing technology. Also, an arm-type ALM technology of shape memory polymer (SMP) with thermosetting polyurethane is briefly introduced.

Design/methodology/approach

This paper begins with an overview of the development and applications of intelligent materials around the world and the 4D printing technology. Then, the authors provide a brief outline of their research on arm-type ALM technology of SMP with thermosetting polyurethane.

Findings

The paper provides the recent developments and applications of intelligent materials and 4D printing technology. Then, it is suggested that intelligent materials mixed with different functional materials will be developed, and these types of materials will be more suitable for 4D printing.

Originality/value

This paper overviews the current developments and applications of intelligent materials and its use in 4D printing technology, and briefly states the authors’ research on arm-type ALM technology of SMP with thermosetting polyurethane.

Details

Assembly Automation, vol. 37 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/AA-11-2015-093
ISSN: 0144-5154

Keywords

  • 4D printing
  • Additive layered manufacturing
  • Intelligent materials
  • Thermosetting polyurethane

To view the access options for this content please click here
Article
Publication date: 9 September 2014

4D Printing: dawn of an emerging technology cycle

Eujin Pei

The purpose of this article is to reviews state-of-the-art developments in four-dimensional (4D) printing, discuss what it is, investigate new applications that have been…

HTML
PDF (153 KB)

Abstract

Purpose

The purpose of this article is to reviews state-of-the-art developments in four-dimensional (4D) printing, discuss what it is, investigate new applications that have been discovered and suggest its future impact.

Design/methodology/approach

The article clarifies the definition of 4D printing and describes notable examples covering material science, equipment and applications.

Findings

This article highlights an emerging technology cycle where 4D printing research has gained traction within additive manufacturing. The use of stimuli-responsive materials can be programmed and printed to enable pre-determined reactions when subject to external stimuli.

Originality/value

This article reviews state-of-the-art developments in 4D printing, discusses what it is, investigates new applications that have been discovered and suggests its future impact.

Details

Assembly Automation, vol. 34 no. 4
Type: Research Article
DOI: https://doi.org/10.1108/AA-07-2014-062
ISSN: 0144-5154

Keywords

  • 3D Printing
  • 4D Printing
  • Additive manufacturing
  • Functionally graded Rapid prototyping
  • Variable property rapid prototyping

To view the access options for this content please click here
Article
Publication date: 20 June 2020

A review of 3D printing processes and materials for soft robotics

Yee Ling Yap, Swee Leong Sing and Wai Yee Yeong

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is…

HTML
PDF (2.7 MB)

Abstract

Purpose

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently challenging and highly time- and labor-intensive. Recent advancements in three-dimensional (3D) printing of soft materials and multi-materials have become the key to enable direct manufacturing of soft robots with sophisticated designs and functions. Hence, this paper aims to review the current 3D printing processes and materials for soft robotics applications, as well as the potentials of 3D printing technologies on 3D printed soft robotics.

Design/methodology/approach

The paper reviews the polymer 3D printing techniques and materials that have been used for the development of soft robotics. Current challenges to adopting 3D printing for soft robotics are also discussed. Next, the potentials of 3D printing technologies and the future outlooks of 3D printed soft robotics are presented.

Findings

This paper reviews five different 3D printing techniques and commonly used materials. The advantages and disadvantages of each technique for the soft robotic application are evaluated. The typical designs and geometries used by each technique are also summarized. There is an increasing trend of printing shape memory polymers, as well as multiple materials simultaneously using direct ink writing and material jetting techniques to produce robotics with varying stiffness values that range from intrinsically soft and highly compliant to rigid polymers. Although the recent work is done is still limited to experimentation and prototyping of 3D printed soft robotics, additive manufacturing could ultimately be used for the end-use and production of soft robotics.

Originality/value

The paper provides the current trend of how 3D printing techniques and materials are used particularly in the soft robotics application. The potentials of 3D printing technology on the soft robotic applications and the future outlooks of 3D printed soft robotics are also presented.

Details

Rapid Prototyping Journal, vol. 26 no. 8
Type: Research Article
DOI: https://doi.org/10.1108/RPJ-11-2019-0302
ISSN: 1355-2546

Keywords

  • Additive manufacturing
  • 3D printing
  • Multi-materials
  • Soft robotics
  • Soft materials

To view the access options for this content please click here
Article
Publication date: 4 March 2019

Characterization of shape memory polymer parts fabricated using material extrusion 3D printing technique

Carlos Alejandro Garcia Rosales, Hoejin Kim, Mario F. Garcia Duarte, Luis Chavez, Mariana Castañeda, Tzu-Liang Bill Tseng and Yirong Lin

Shape memory polymer (SMP) is capable of recovering its original shape from a high degree of deformation by applying an external stimulus such as thermal energy. This…

HTML
PDF (2.1 MB)

Abstract

Purpose

Shape memory polymer (SMP) is capable of recovering its original shape from a high degree of deformation by applying an external stimulus such as thermal energy. This research presents an integration of two commercial SMP materials (DiAPLEX and Tecoflex) and a material extrusion (ME) printer to fabricate SMP parts and specimens. The material properties such as Young’s modulus of the specimens was examined as a process output. Furthermore, stress-strain curve, strain recovery, instant shape-fixity ratio, long-term shape-fixity ratio and recovery ratio of SMP specimens during a thermo-mechanical cycle were investigated.

Design/methodology/approach

The ME fabrication settings for the SMP specimens were defined by implementing a design of experiments with temperature, velocity and layer height as process variables.

Findings

It was found, according to main effect and iteration plots, that fabrication parameters have an impact on Young’s modulus and exist minimum iteration among variables. In addition, Young’s modulus variation of DiAPLEX and Tecoflex specimens was mostly caused by velocity and layer height parameters, respectively. Moreover, results showed that SMP specimens were able to recover high levels of deformation.

Originality/value

This paper is a reference for process control and for rheological properties of SMP parts produced by ME fabrication process.

Details

Rapid Prototyping Journal, vol. 25 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/RPJ-08-2017-0157
ISSN: 1355-2546

Keywords

  • 4D printing
  • Shape memory polymer
  • Design of experiments
  • Material extrusion

To view the access options for this content please click here
Article
Publication date: 28 February 2020

Impact of instantaneous curvature on force and heat generation in manufacturing processes – a mathematical modelling

Sreerag C., Gokul R., Vinaykumar J. and Rajyalakshmi G.

In any machining process, the surface profile of the workpiece is continuously changing with respect to time and input parameters. In a conventional machining process…

HTML
PDF (2 MB)

Abstract

Purpose

In any machining process, the surface profile of the workpiece is continuously changing with respect to time and input parameters. In a conventional machining process, input parameters are feed and depth of cut whilst other parameters are considered to be constant throughout the process.

Design/methodology/approach

The direct and indirect participation of this instantaneous curvature can be used to optimize the strategy of cutting operation in terms of different parameters like heat generation-induced stresses, etc. The concepts of the metric tensor and Riemannian curvature tensor are made use in this study as a representation of curvature itself. The objective of this study is to create a mathematical methodology that can be implemented on a highly flexible machining process to find an optimum cutting strategy for a particular output parameter.

Findings

The study also includes different case studies for the validation of this newly introduced mathematical methodology.

Originality/value

The study will also find its position in other mechanical processes like forging and casting where instantaneous curvature affects various mechanical properties.

Details

Engineering Computations, vol. 37 no. 7
Type: Research Article
DOI: https://doi.org/10.1108/EC-06-2019-0289
ISSN: 0264-4401

Keywords

  • Machining process
  • Metric tensor
  • Riemannian tensor
  • Forging
  • Instantaneous curvature

To view the access options for this content please click here
Article
Publication date: 3 April 2017

A study of 4D printing and functionally graded additive manufacturing

Eujin Pei, Giselle Hsiang Loh, David Harrison, Henrique de Amorim Almeida, Mario Domingo Monzón Verona and Rubén Paz

The purpose of this paper is to extend existing knowledge of 4D printing, in line with Khoo et al. (2015) who defined the production of 4D printing using a single…

HTML
PDF (307 KB)

Abstract

Purpose

The purpose of this paper is to extend existing knowledge of 4D printing, in line with Khoo et al. (2015) who defined the production of 4D printing using a single material, and 4D printing of multiple materials. It is proposed that 4D printing can be achieved through the use of functionally graded materials (FGMs) that involve gradational mixing of materials and are produced using an additive manufacturing (AM) technique to achieve a single component.

Design/methodology/approach

The latest state-of-the-art literature was extensively reviewed, covering aspects of materials, processes, computer-aided design (CAD), applications and made recommendations for future work.

Findings

This paper clarifies that functionally graded additive manufacturing (FGAM) is defined as a single AM process that includes the gradational mixing of materials to fabricate freeform geometries with variable properties within one component. The paper also covers aspects of materials, processes, CAD, applications and makes recommendations for future work.

Research limitations/implications

This paper examines the relationship between FGAM and 4D printing and defines FGAM as a single AM process involving gradational mixing of materials to fabricate freeform geometries with variable properties within one component. FGAM requires better computational tools for modelling, simulation and fabrication because current CAD systems are incapable of supporting the FGAM workflow.

Practical implications

It is also identified that other factors, such as strength, type of materials, etc., must be taken into account when selecting an appropriate process for FGAM. More research needs to be conducted on improving the performance of FGAM processes through extensive characterisation of FGMs to generate a comprehensive database and to develop a predictive model for proper process control. It is expected that future work will focus on both material characterisation as well as seamless FGAM control processes.

Originality/value

This paper examines the relationship between FGAM and 4D printing and defines FGAM as a single AM process that includes gradational mixing of materials to fabricate freeform geometries with variable properties within one component.

Details

Assembly Automation, vol. 37 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/AA-01-2017-012
ISSN: 0144-5154

Keywords

  • Composites
  • Rapid prototyping
  • Rapid manufacturing
  • 3D
  • Smart materials

To view the access options for this content please click here
Article
Publication date: 1 April 2014

4D printing – revolution or fad?

Eujin Pei

This feature article aims to review state-of-the-art developments in additive manufacture, in particular, 4D printing. It discusses what it is, what research has been…

HTML
PDF (379 KB)

Abstract

Purpose

This feature article aims to review state-of-the-art developments in additive manufacture, in particular, 4D printing. It discusses what it is, what research has been carried out and maps potential applications and its future impact.

Design/methodology/approach

The article first defines additive manufacturing technologies and goes on to describe the state-of-the-art. Following which the paper examines several case studies and maps a trend that shows an emergence of 4D printing.

Findings

The case studies highlight a particular specialization within additive manufacture where the use of adaptive, biomimetic composites can be programmed to reshape, or have embedded properties or functionality that transform themselves when subjected to external stimuli.

Originality/value

This paper discusses the state-of-the-art of additive manufacture, discussing strategies that can be used to reduce the print process (such as through kinematics); and the use of smart materials where parts adapt themselves in response to the surrounding environment supporting the notion of self-assemblies.

Details

Assembly Automation, vol. 34 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/AA-02-2014-014
ISSN: 0144-5154

Keywords

  • Rapid manufacturing
  • Rapid prototyping
  • Design for assembly
  • Additive manufacturing
  • 4D printing
  • Modular automation

Content available
Book part
Publication date: 1 May 2019

3D-Printing Technology in Construction: Results from a Survey

Nils O.E. Olsson, Ali Shafqat, Emrah Arica and Andreas Økland

The purpose of this paper is to study the introduction of 3D-printing of concrete in the construction sector.

Open Access
HTML
PDF (1.1 MB)
EPUB (542 KB)

Abstract

Purpose

The purpose of this paper is to study the introduction of 3D-printing of concrete in the construction sector.

Design/Methodology/Approach

A survey was conducted to collect professional view on ongoing innovations in the construction sector, including 3D-printing. Participants were selected among the members of Norwegian networks for project and construction management research.

Findings

The survey highlighted effective leadership, collaboration with partners and industry-academia collaboration as primary enablers of innovation. Few of the respondents to the survey have used 3D-printing technologies.

Research Limitations/Implications

It is difficult to obtain representative samples in this type of research, including this study. The study can be seen as a snapshot of attitudes in the sector.

Practical Implications

3D-printing appear as a potentially interesting technology, especially for unstandardized construction components. Further work is needed to materialise the expectation for technological development in the construction sector.

Originality/Value

Most research on 3D-printing has focused on demonstrating technical potential. This study adds a practitioners’ perspective, with a large dose of pragmatism.

Details

10th Nordic Conference on Construction Economics and Organization
Type: Book
DOI: https://doi.org/10.1108/S2516-285320190000002044
ISBN: 978-1-83867-051-1

Keywords

  • 3D-printing
  • Concrete
  • Implementation
  • Additive
  • Hybrid additive/Subtractive manufacturing
  • HINDCON

To view the access options for this content please click here
Article
Publication date: 17 July 2020

Additive manufacturing of shape memory polymers: effects of print orientation and infill percentage on shape memory recovery properties

Jorge Villacres, David Nobes and Cagri Ayranci

The purpose of this paper is to study the shape memory properties of SMP samples produced through a MEAM process. Fused deposition modeling or, as it will be referred to…

HTML
PDF (1.9 MB)

Abstract

Purpose

The purpose of this paper is to study the shape memory properties of SMP samples produced through a MEAM process. Fused deposition modeling or, as it will be referred to in this paper, material extrusion additive manufacturing (MEAM) is a technique in which polymeric materials are extruded though a nozzle creating parts via accumulation and joining of different layers. These layers are fused together to build three-dimensional objects. Shape memory polymers (SMP) are stimulus responsive materials, which have the ability to recover their pre-programmed form after being exposed to a large strain. To induce its shape memory recovery movement, an external stimulus such as heat needs to be applied.

Design/methodology/approach

This project investigates and characterizes the influence of print orientation and infill percentage on shape recovery properties. The analyzed shape recovery properties are shape recovery force, shape recovery speed and time elapsed before activation. To determine whether the analyzed factors produce a significant variation on shape recovery properties, t-tests were performed with a 95% confidence factor between each analyzed level.

Findings

Results proved that print angle and infill percentage do have a significant impact on recovery properties of the manufactured specimens.

Originality/value

The manufacturing of SMP objects through a MEAM process has a vast potential for different applications; however, the shape recovery properties of these objects need to be analyzed before any practical use can be developed. These have not been studied as a function of print parameters, which is the focus of this study.

Details

Rapid Prototyping Journal, vol. 26 no. 9
Type: Research Article
DOI: https://doi.org/10.1108/RPJ-09-2019-0239
ISSN: 1355-2546

Keywords

  • Fused deposition modeling
  • Additive manufacturing
  • Smart materials
  • Shape memory polymers
  • Material extrusion additive manufacturing
  • Shape memory properties

Access
Only content I have access to
Only Open Access
Year
  • Last month (4)
  • Last 3 months (10)
  • Last 6 months (14)
  • Last 12 months (39)
  • All dates (741)
Content type
  • Article (696)
  • Book part (23)
  • Earlycite article (17)
  • Case study (5)
1 – 10 of 741
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here