Search results

1 – 10 of over 4000
Article
Publication date: 5 May 2015

Mica Grujicic, Subrahmanian Ramaswami, Jennifer Snipes, Rohan Galgalikar, Ramin Yavari, Chian-Fong Yen, Bryan Cheeseman and Jonathan Montgomery

The purpose of this paper is to discuss the recently developed multi-physics computational model for the conventional Gas Metal Arc Welding (GMAW) joining process that has been…

Abstract

Purpose

The purpose of this paper is to discuss the recently developed multi-physics computational model for the conventional Gas Metal Arc Welding (GMAW) joining process that has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic limit (i.e. penetration resistance) of the weld.

Design/methodology/approach

The original model consists of five modules, each dedicated to handling a specific aspect of the GMAW process, i.e.: electro-dynamics of the welding-gun; radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and spatial distribution of the as-welded material mechanical properties. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones.

Findings

The upgraded GMAW process model is next applied to the case of butt-welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler-metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with general expectations and prior observations.

Originality/value

To the authors’ knowledge, the present work is the first reported attempt to establish, using computational modeling, functional relationships between the GMAW process parameters and the mechanical properties controlling the ballistic limit of the resulting weld.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 June 2015

Wenxiong Huang and Ke Xu

Cosserat continuum models are motivated by modeling size effects in materials with micro-structure. While elastic Cosserat continuum models can reproduce size effects in…

Abstract

Purpose

Cosserat continuum models are motivated by modeling size effects in materials with micro-structure. While elastic Cosserat continuum models can reproduce size effects in deformation stiffness, inelastic models are often used to capture localization and post failure behavior of materials. In application of inelastic Cosserat models, parameter determination is a difficult issue not fully addressed. The purpose of this paper is to discuss parameter-related characteristic lengths in Cosserat continuum modeling of granular materials.

Design/methodology/approach

Based on a Cosserat continuum extension of a hypoplastic model for granular media, interpretation of additional parameters are sought through analysis of simple one-dimensional shear. Governing equations are obtained, respectively, for small strain shear formation and for stead flow state in localized zone.

Findings

Two characteristic lengths are obtained analytically for granular materials: one governs the size effect near boundaries in shear deformation, the other scales the thickness of shear band in failure. While both characteristic lengths are proportional to the micro-structure length (the mean grain diameter), the former is related to the micro-stiffness parameter, and the latter depends on the micro-strength parameter. The results reveal a connection between size effects, the micro-structure length and the material properties. The work also provides a new perspective to inelastic Cosserat continuum models, as well as a possible way for determination micro-deformation and strength parameters.

Originality/value

The results reveal a connection between size effects, the micro-structure length and the material properties. The work provides a new perspective and an interpretation to the micro-deformation and strength parameters of inelastic Cosserat continuum models, as well as a possible way for determination of these parameters.

Details

Engineering Computations, vol. 32 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 July 2019

Feng Cheng, Weixi Ji and Junhua Zhao

The disbonding of DLC coating is a main failure mode in the high-speed cavitation condition, which shortens the service life of the bearing. This study aims to investigate…

Abstract

Purpose

The disbonding of DLC coating is a main failure mode in the high-speed cavitation condition, which shortens the service life of the bearing. This study aims to investigate influence of adhesion strength on cavitation erosion resistance of DLC coating.

Design/methodology/approach

Three DLC coatings with different adhesion strengths were grown on the 304 steel surfaces by using a cathodic arc plasma deposition method. Cavitation tests were performed by using a vibratory test rig to investigate the influence of adhesion strength on cavitation erosion resistance of a DLC coating. The cavitation mechanism of the substrate-coating systems was further discussed by means of surface analyses.

Findings

The results indicated that, the residual stress decreased and then increased with the increasing DLC coating thickness from 1 µm to 2.9 µm, and the lower residual stress can improve the adhesion strength of the DLC coating to the substrate. It was also concluded that, the plastic deformation as well as the fracture occurred on the DLC coating surface at the same time, owing to higher residual stress and poorer adhesion strength. However, lower residual stress and better adhesion strength could help resist the occurrence of the coating fracture.

Originality/value

Cavitation tests were performed by using a vibratory test rig to investigate the influence of adhesion strength on cavitation erosion resistance of the DLC coating. The plastic deformation and the fracture occurred on the DLC coating surface at the same time, owing to higher residual stress and poorer adhesion of coating. Lower residual stress and better adhesion of coating could resist the occurrence of the DLC coating fracture.

Details

Industrial Lubrication and Tribology, vol. 71 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 October 2015

Ali Johari, Jaber Rezvani Pour and Akbar Javadi

Liquefaction of soils is defined as significant reduction in shear strength and stiffness due to increase in pore water pressure. This phenomenon can occur in static (monotonic…

Abstract

Purpose

Liquefaction of soils is defined as significant reduction in shear strength and stiffness due to increase in pore water pressure. This phenomenon can occur in static (monotonic) or dynamic loading patterns. However, in each pattern, the inherent variability of the soil parameters indicates that this problem is of a probabilistic nature rather than being deterministic. The purpose of this paper is to present a method, based on random finite element method, for reliability assessment of static liquefaction of saturated loose sand under monotonic loading.

Design/methodology/approach

The random finite element analysis is used for reliability assessment of static liquefaction of saturated loose sand under monotonic loading. The soil behavior is modeled by an elasto-plastic effective stress constitutive model. Independent soil parameters including saturated unit weight, peak friction angle and initial plastic shear modulus are selected as stochastic parameters which are modeled using a truncated normal probability density function (pdf).

Findings

The probability of liquefaction is assessed by pdf of modified pore pressure ratio at each depth. For this purpose pore pressure ratio is modified for monotonic loading of soil. It is shown that the saturated unit weight is the most effective parameter, within the selected stochastic parameters, influencing the static soil liquefaction.

Originality/value

This research focuses on the reliability analysis of static liquefaction potential of sandy soils. Three independent soil parameters including saturated unit weight, peak friction angle and initial plastic shear modulus are considered as stochastic input parameters. A computer model, coded in MATLAB, is developed for the random finite element analysis. For modeling of the soil behavior, a specific elasto-plastic effective stress constitutive model (UBCSAND) was used.

Article
Publication date: 10 October 2008

J.A. Alvarado‐Contreras, M.A. Polak and A. Penlidis

The purpose of this paper is to formulate an algorithm for a novel damage‐coupled material law for crystalline polyethylene at finite inelastic strains followed by investigation…

Abstract

Purpose

The purpose of this paper is to formulate an algorithm for a novel damage‐coupled material law for crystalline polyethylene at finite inelastic strains followed by investigation of the influence of the aggregate representation and material parameters on the material response.

Design/methodology/approach

The constitutive equations are developed within the framework of continuum damage mechanics to describe crystal fragmentation caused by atomic debonding of the crystallographic planes. The material is assumed initially isotropic and homogeneous and is represented as an aggregate of randomly oriented crystals with an orthorhombic lattice. For the velocity gradient, an additive decomposition into symmetric and skew‐symmetric components is applied, where the skew‐symmetric part (spin) is decoupled from the lattice shear by means of a damage variable. Structural features such as lattice parameters and orientations, slip systems, and kinematic constraints are incorpo‐rated.

Findings

The proposed model is implemented to predict stress‐strain behaviour under uniaxial tension and damage accumulation and texture development at the different stages of deformation. In the numerical examples, the effects of the aggregate size, crystal orientations, and material parameters on the model estimates are analyzed.

Originality/value

The model used herein is a first attempt to analyze the influence of crystal fragmentation caused by the debonding of the crystallographic planes on the predicted mechanical behaviour and texture development of polyethylene prior to failure.

Details

Engineering Computations, vol. 25 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 March 2012

J.A. Alvarado‐Contreras, M.A. Polak and A. Penlidis

The purpose of this paper is to provide a computational procedure for a novel damage‐coupled material law for semicrystalline polyethylene. Using a damage mechanics approach, the…

Abstract

Purpose

The purpose of this paper is to provide a computational procedure for a novel damage‐coupled material law for semicrystalline polyethylene. Using a damage mechanics approach, the model seeks to gain insight into the mechanical behaviour of polyethylene considering the microstructure and degradation processes occurring under uniaxial tension.

Design/methodology/approach

The material morphology is modelled as a collection of inclusions. Each inclusion consists of crystalline material lying in a thin lamella attached to an amorphous layer. The interface region interconnecting the two phases is the plane through which loads are carried and transferred by the tie molecules. It is assumed that the constitutive model contains complete information about the mechanical behaviour and degradation processes of each constituent. After modelling the two phases independently, the inclusion behaviour is found by applying some compatibility and equilibrium restrictions along the interface plane.

Findings

The model provides a rational representation of the damage process of the intermolecular bonds holding crystals and of the tie‐molecules connecting neighbouring crystallites. The model is also used to analyze the degree of relationship between some of the material properties and the mechanical responses.

Practical implications

In practice, the numerical model clearly helps to understand the influence of the different microstructure properties on the tensile mechanical behaviour of semicrystalline polyethylene – an issue of particular interest in improving material processability and product performance.

Originality/value

To the authors’ knowledge, a phenomenon such as microstructural degradation of polyethylene has not received much attention in the literature. The proposed model successfully captures aspects of the material behaviour considering crystal fragmentation and tie‐molecule rupture.

Article
Publication date: 24 January 2019

Min Wang, Y.T. Feng, Ting T. Zhao and Yong Wang

Sand production is a challenging issue during hydrocarbon production in the oil and gas industry. This paper aims to investigate one sand production process, i.e. transient sand…

Abstract

Purpose

Sand production is a challenging issue during hydrocarbon production in the oil and gas industry. This paper aims to investigate one sand production process, i.e. transient sand production, using a novel bonded particle lattice Boltzmann method. This mesoscopic technique provides a unique insight into complicated sand erosion process during oil exploitation.

Design/methodology/approach

The mesoscopic fluid-particle coupling is directly approached by the immersed moving boundary method in the framework of lattice Boltzmann method. Bonded particle method is used for resolving the deformation of solid. The onset of grain erosion of rocks, which are modelled by a bonded particle model, is realised by breaking the bonds simulating cementation when the tension or tangential force exceeds critical values.

Findings

It is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. It is found that when the drawdown happens at the wellbore cavity, the tensile failure area appears at the edge of the cavity. Then, the tensile failure area gradually propagates inward, and the solid particles at the tensile failure area become fluidised because of large drag forces. Subsequently, some eroded particles are washed out. This numerical investigation is demonstrated through comparison with the experimental results. In addition, through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured.

Originality/value

A novel bonded particle lattice Boltzmann method is used to investigate the sand production problem at the grain level. It is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. Through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured.

Details

Engineering Computations, vol. 36 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 2006

Y. Zhang

To review, analyze and present the effects of the contact‐fluid interfacial shear strength and contact‐fluid interfacial slippage and the critical importance of these effects in…

2043

Abstract

Purpose

To review, analyze and present the effects of the contact‐fluid interfacial shear strength and contact‐fluid interfacial slippage and the critical importance of these effects in elastohydrodynamic lubrication (EHL).

Design/methodology/approach

The experimental and theoretical research results of the contact‐fluid interfacial shear strength and its caused contact‐fluid interfacial slippage in hydrodynamic lubrication and especially in EHL obtained in the past decades and progressed in recent years by the present author and by others are reviewed. Analysis and presentation are made on both the contact‐fluid interfacial shear strength versus fluid pressure curve for a given bulk fluid temperature in an isothermal EHL and the influence of the bulk fluid temperature on this curve.

Findings

It is very clearly and well understood from the present paper that the value of the contact‐fluid interfacial shear strength in the inlet zone in an EHL contact, i.e. at low EHL fluid film pressures is usually low and usually has rather a weak dependence on the EHL fluid film pressure. This proves the correctness of the EHL theories previously developed by the author based on the assumption of this low value and dependence on the EHL fluid film pressure of the contact‐fluid interfacial shear strength. It is also very clearly understood that the bulk fluid temperature usually has a strong influence on the value of the contact‐fluid interfacial shear strength in EHL and the increase of this temperature usually significantly reduces the value of the contact‐fluid interfacial shear strength in EHL.

Practical implications

A very useful material for the engineers who are engaged in the design of EHL on gears, cams and roller bearings, and for the tribology scientists who thrust efforts in studying EHL and mixed EHL both by theoretical modeling and by experiments.

Originality/value

A new and generalized mode of mixed EHL is originally proposed by incorporating the finding of a more realistic mode of the contact regimes in a practical mixed EHL based on the contact‐fluid interfacial shear strength and contact‐fluid interfacial slippage effects. This mode of mixed EHL should become the direction of the theoretical research of mixed EHL in the future.

Details

Industrial Lubrication and Tribology, vol. 58 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 November 2019

Vijay Kumar Polimeru and Arghadeep Laskar

The purpose of this study is to evaluate the effectiveness of two-dimensional (2D) cyclic softened membrane model (CSMM)-based non-linear finite element (NLFE) model in predicting…

Abstract

Purpose

The purpose of this study is to evaluate the effectiveness of two-dimensional (2D) cyclic softened membrane model (CSMM)-based non-linear finite element (NLFE) model in predicting the complete non-linear response of shear critical bridge piers (with walls having aspect ratios greater than 2.5) under combined axial and reversed cyclic uniaxial bending loads. The effectiveness of the 2D CSMM-based NLFE model has been compared with the widely used one-dimensional (1D) fiber-based NLFE models.

Design/methodology/approach

Three reinforced concrete (RC) hollow rectangular bridge piers tested under reversed cyclic uniaxial bending and sustained axial loads at the National Centre for Research on Earthquake Engineering (NCREE) Taiwan have been simulated using both 1D and 2D models in the present study. The non-linear behavior of the bridge piers has been studied through various parameters such as hysteretic loops, energy dissipation, residual drift, yield load and corresponding drift, peak load and corresponding drift, ultimate loads, ductility, specimen stiffness and critical strains in concrete and steel. The results obtained from CSMM-based NLFE model have been critically compared with the test results and results obtained from the 1D fiber-based NLFE models.

Findings

It has been observed from the analysis results that both 1D and 2D simulation models performed well in predicting the response of flexure critical bridge pier. However, in the case of shear critical bridge piers, predictions from 2D CSMM-based NLFE simulation model are more accurate. It has, thus, been concluded that CSMM-based NLFE model is more accurate and robust to simulate the complete non-linear behavior of shear critical RC hollow rectangular bridge piers.

Originality/value

In this study, a novel attempt has been made to provide a rational and robust FE model for analyzing shear critical hollow RC bridge piers (with walls having aspect ratios greater than 2.5).

Details

Engineering Computations, vol. 37 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 2004

Y. Zhang

This paper studies elastohydrodynamic lubrication (EHL) of line contacts for the slide‐roll ratios 0‐2 based on the assumptions of interfacial shear strength and interfacial slip…

Abstract

This paper studies elastohydrodynamic lubrication (EHL) of line contacts for the slide‐roll ratios 0‐2 based on the assumptions of interfacial shear strength and interfacial slip. It is shown that the viscoelastic, viscoplastic and non‐continuum fluids distribute from the inlet zone to the Hertzian contact zone in order for a given operating condition when the load and rolling speed exceed critical values. For the rolling speed below the critical, the distributing fluids from the inlet zone to the Hertzian contact zone in order are viscoelastic and non‐continuum when the load exceeds a critical value. These show a multirheological behavior EHL film, formed in a contact, which may represent a mode of mixed lubrication. For this mode of lubrication, the fluid model should handle both inlet and Hertzian contact zones where the fluids are, respectively, continuum and non‐continuum. A new EHL analysis and theory, therefore needs to be established.

Details

Industrial Lubrication and Tribology, vol. 56 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 4000