Search results

1 – 10 of 309
Article
Publication date: 7 December 2021

Khaled Mostafa

This paper aims at studying the oxygen plasma treatment and the previously prepared and fully characterized chitosan nanoparticles (CNPs) as a green and eco-friendly strategy for…

Abstract

Purpose

This paper aims at studying the oxygen plasma treatment and the previously prepared and fully characterized chitosan nanoparticles (CNPs) as a green and eco-friendly strategy for surface modification of viscose fabric. This was done to render viscose fabric dye able with two types of acid dyes that do not have direct affinity to fix on it via improving the fabric wettability.

Design/methodology/approach

To achieve the goal, viscose fabric was activated with oxygen plasma at optimum conditions and coated with different concentrations of CNPs solution via conventional pad dry cure technique. The untreated and plasma-treated fabrics with CNPs were dyed with two types of acid dyes, namely, Acid Orange 7 and Methyl Red under determined conditions. The color strength (K/S), fastness properties to light, rubbing and perspiration, add on %, tensile strength, wettability and durability of the dyed samples were determined and compared.

Findings

The results divulged that oxygen plasma-treated fabric with CNPs and the aforementioned dyes in question could improve the flowing properties in comparison with untreated fabric: (a) the fabric wettability expressed as wetting area mm2; (b) the dye ability and fastness properties of viscose fabrics expressed as K/S and fastness properties; and (c) the strength properties and add on % of the treated fabric. On the other hand, the durability of the plasma-treated fabric decreased with increasing washing cycles.

Originality/value

The novelty addressed here was using plasma treatment as an eco-friendly pre-treatment approach for attachment of CNPs as a multifunctional green bio-nano polymer onto viscose fabric, which improved the dyeing properties of the fabric with acid dyes that do not have direct affinity to fix onto it.

Details

Pigment & Resin Technology, vol. 52 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 September 2019

Mei Yang, Tingyu Huang, Ning Tang, Ben Ou and Wenhao Zhang

This paper aims to investigate the photocatalytic activity of zinc doped MAO-TiO2 films under the optimum MAO treatment condition.

Abstract

Purpose

This paper aims to investigate the photocatalytic activity of zinc doped MAO-TiO2 films under the optimum MAO treatment condition.

Design/methodology/approach

The coating was prepared by micro arc oxidation, and the influence of doping on the properties of the coating was also investigated.

Findings

The results show that the BET surface area is 78.25±0.03m2/g, total pore area is 76.32 ± 0.04m2/g, and the total pore volume is 0.2135 ± 0.0004cm3/g. The degradation ratio of the film electrode with Zn-doped in methyl orange solution is up to 94%. When the react circles is 10 times, the degradation ratio is up to more than 85% and remains steady. With the different reaction conditions, these kinetics of the reactions show some different formulas.

Originality/value

A kinetic equation for photocatalytic activity is established.

Details

Pigment & Resin Technology, vol. 48 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 August 2022

Hanieh Shaki

In this study, the removal of a series of acid dyes by hybrid polymer adsorbent was investigated. Textile industry wastewater is mainly consisted of suspended solid particles and…

Abstract

Purpose

In this study, the removal of a series of acid dyes by hybrid polymer adsorbent was investigated. Textile industry wastewater is mainly consisted of suspended solid particles and organic compounds with complex and nondecomposable structures. Treatment of such wastewaters has received much attention by researchers because of high water consumption and the presence of various chemical compounds, especially dyes. The use of polymers has recently attracted much attention for the treatment of textile wastewaters. According to the literature, hybrid polymers are highly capable of adsorbing dyes. In this research work, polyacrylamide/iron sulfate (PAM-FeSO4) hybrid polymer was successfully synthesized through solution polymerization of acrylamide with ammonium persulfate and sodium thiosulfate and gradual addition of iron sulfate. The hybrid polymeric adsorbent was then used for removing acidic dyes with different chemical structures.

Design/methodology/approach

The effects of various experimental conditions and parameters, such as initial concentrations of dye and adsorbent, on the adsorption capacity of the adsorbent were investigated. The dye concentration was measured by an UV–vis spectrophotometer. The adsorption equilibrium was studied by plotting adsorption isotherms. The experimental data was fitted to Langmuir and Freundlich isotherms.

Findings

The adsorption experiments indicated that the PAM-FeSO4 hybrid polymer has a high adsorption capacity (117.64 mg g−1 for the Orange ІІ and 80.64 mg g−1 for the Sunset Yellow [SY]) when 80 mg of adsorbent was immersed in the dye solution (1 g L−1) with a pH of 11 at 25°C. The analysis of the equilibrium isotherms using the Langmuir and Freundlich isotherms indicated that the Langmuir model fit well to the experimental data.

Originality/value

To the best of the authors’ knowledge, this study is original. The removal of acid dyes such as Sunset Yellow and Methyl Orange using PAM-FeSO4 hybrid polymer as flocculant was done for the first time.

Details

Pigment & Resin Technology, vol. 52 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 September 2019

Y.J. Guo, W. Cheng and P.S. Liu

The purpose of this paper is to provide an investigation on a new kind of photocatalytic material, namely, the porous ceramic foam loading titanium dioxide, which can make an…

Abstract

Purpose

The purpose of this paper is to provide an investigation on a new kind of photocatalytic material, namely, the porous ceramic foam loading titanium dioxide, which can make an effective photocatalytic degradation of the methyl orange (MO) solution in the wastewater.

Design/methodology/approach

The natural zeolite powder has been used as the primary raw material to produce a sort of lightweight porous ceramic foam by impregnating polymer foam in slurry and then sintering. With the sol-gel method, a kind of open-cell reticular porous ceramic foam loading TiO2 film was obtained having a good photocatalytic action, and the resultant porous composite product presents the bulk density of 0.3~0.6 g/cm3 to be able to float on water.

Findings

The MO could tend to be completely degraded in the solution with a certain concentration by the TiO2-loaded ceramic foam irradiated with ultraviolet light, and this composite foam was found to have high degradation efficiency for the MO solution in a wide range of pH.

Originality/value

This work presents a TiO2-loaded ceramic foam that can effectively photo-catalyze to degrade the MO in water, and the degradation efficiency were examined under different conditions of the MO solution with various pH values.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 23 August 2015

Juan Xie, Meixia Li, Yongjing Hao, Xiaocai Meng, Yuan Meng and Zhen Li

Using only zinc nitrate, ferric nitrate and sodium hydroxide as reactants, rod-like and flower-like α-Fe2O3/ZnO composites were prepared via a simple and rapid solution route by…

Abstract

Using only zinc nitrate, ferric nitrate and sodium hydroxide as reactants, rod-like and flower-like α-Fe2O3/ZnO composites were prepared via a simple and rapid solution route by controlling the composition of precursor solution. The products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). Photocatalytic activity of the as-prepared α-Fe2O3/ZnO composites was evaluated by degradation of methyl orange (MO) under simulated solar light. The results indicated that both α-Fe2O3/ZnO composites possess higher photocatalytic activity than commercial P25 TiO2. In addition, possible reasons why α-Fe2O3/ZnO composites have excellent photocatalytic performance were discussed.

Details

World Journal of Engineering, vol. 12 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 August 1899

Numbers of worthy people are no doubt nursing themselves in the fond and foolish belief that when the Food Bill has received the Royal assent, and becomes law, the manufacture and…

Abstract

Numbers of worthy people are no doubt nursing themselves in the fond and foolish belief that when the Food Bill has received the Royal assent, and becomes law, the manufacture and sale of adulterated and sophisticated products will, to all intents and purposes, be suppressed, and that the Public Analyst and the Inspector will be able to report the existence of almost universal purity and virtue. This optimistic feeling will not be shared by the traders and manufacturers who have suffered from the effects of unfair and dishonest competition, nor by those whose knowledge and experience of the existing law enables them to gauge the probable value of the new one with some approach to accuracy. The measure has satisfied nobody, and can satisfy nobody but those whose nefarious practices it is intended to check, and who can fully appreciate the value, to them, of patchwork and superficial legislation. We have repeatedly pointed out that repressive legislation, however stringent and however well applied, can never give the public that which the public, in theory, should receive—namely, complete protection and adequate guarantee,—nor to the honest trader the full support and encouragement to which he is entitled. But, in spite of the defects and ineffectualities necessarily attaching to legislation of this nature, a strong Government could without much difficulty have produced a far more effective, and therefore more valuable law than that which, after so long an incubation, is to be added to the statute‐book.

Details

British Food Journal, vol. 1 no. 8
Type: Research Article
ISSN: 0007-070X

Article
Publication date: 12 January 2010

I. Tsangaraki‐Kaplanoglou, A. Kanta, S. Theohari and V. Ninni

The purpose of this paper is to provide acid‐dyes, known for the dyeing of porous aluminum oxide films, as inhibitors of the corrosion of aluminum in neutral chloride solutions.

Abstract

Purpose

The purpose of this paper is to provide acid‐dyes, known for the dyeing of porous aluminum oxide films, as inhibitors of the corrosion of aluminum in neutral chloride solutions.

Design/methodology/approach

Potentiodynamic polarization plots are recorded on mechanically pretreated aluminum using a three‐electrode cell containing 0.01 M NaCl solution with or without 0.025 mM of the acid‐dyes monosulfonic methyl orange (MO), disulfonic chromotrop RR (CH), disulfonic alphazurine A (AZ) and trisulfonic light green SF yellowish (LG). The X‐ray fluorescence technique is used in certain cases for the estimation of sulfur net content of the surface of the probes and thus of the concentration of the adsorbed dye.

Findings

The inhibition efficiency of acid dyes on corrosion of mechanically pretreated aluminum seems to be related more to the presence of a following quinonoid structure which probably contributes more to the formation of mono‐ or bi‐dentate compounds with the aluminum cations in the substrate than to the number of sulfonic groups in their molecule. Thus, the triphenylmethane dyes LG and, to a greater extent AZ, having this quinonoid structure means they are more efficient as corrosion inhibitors in near‐neutral chloride solution than the azo dyes MO and CH, that do not have it.

Practical implications

Selected acid‐dyes such as triphenylmethane sulfonic‐dyes, which have found wide application in the dyeing industry, seem to protect aluminum against the corrosive action of chlorides.

Originality/value

This paper is intended to be the nucleus for the electrochemical studies of the effectiveness of acid dyes as corrosion inhibitors for aluminum.

Details

Anti-Corrosion Methods and Materials, vol. 57 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 June 2015

Shu-Hao Deng, Xi Yang, Mao Wang and Jiao Wang

– The purpose of this paper is to improve anti-corrosion, self-cleaning, hydrophily and sterilization properties of aluminum (Al) alloy.

Abstract

Purpose

The purpose of this paper is to improve anti-corrosion, self-cleaning, hydrophily and sterilization properties of aluminum (Al) alloy.

Design/methodology/approach

A multifunctional coating for medical external application on Al alloy had been prepared by anodic oxidation, electrolytic coloring silver (Ag) and sealed in boiling water with nano-sized titanium dioxide (TiO2) particles. The multifunctional coating was characterized by X-ray diffraction, scanning electron microscope and energy dispersive spectroscopy. Other properties such as corrosion-resistance, wipe-resistance, hydrophilicity, photochemical decomposition and bactericidal antiseptic effect were also investigated.

Findings

The results demonstrate that a golden film with multi-function had been obtained for medical external application. The main phase of coating is amorphous Al2O3, and nano-sized silver particle is electrodeposited in bottom of film hole, while nano-sized TiO2 is sealed on the external surface of coating. The properties of film, such as anti-corrosion, self-cleaning, hydrophily, sterilization are better than those of Al alloy substrate.

Originality/value

Considering about this usage for medical external application, a multifunctional coating which has the properties such as decoration, anti-corrosion, sterilize and self-cleaning has been first prepared on Al alloy surface in the study. This coating would meet the requirements of medical external using and provide theoretical and practical foundation about Al alloy for medical use.

Details

International Journal of Structural Integrity, vol. 6 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 April 2023

Priyanka Sakare and Saroj Kumar Giri

The purpose of this paper was to study the color change kinetics of lac dye in response to aldehydes, carbon dioxide and other food spoilage metabolites for its potential…

Abstract

Purpose

The purpose of this paper was to study the color change kinetics of lac dye in response to aldehydes, carbon dioxide and other food spoilage metabolites for its potential application in intelligent food packaging.

Design/methodology/approach

UV–Vis spectroscopy was used to study the color change of dye solution. Ratio of absorbance of dye solution at 528 nm (peak of ionized form) to absorbance at 488 nm (peak of unionized form) was used to study the color change. Color change kinetics was studied in terms of change in absorbance ratio (A528/A488) with time using zero and first-order reaction kinetics. Lac dye-based indicator was prepared to validate the result of study for monitoring quality of strawberries.

Findings

Lac dye was orange-red in acidic medium and purple in alkaline medium. Color change of dye in response to benzaldehyde followed zero-order reaction kinetics, whereas for carbon dioxide first-order model was found best. No color change of dye solution was observed for alcohols, ketones and sulfur compounds. In the validation part, the color of the indicator label changed from purple to orange when the strawberries spoiled.

Originality/value

The study expands application area for lac dye as sensing reagent in intelligent food packaging for spoilage or ripeness detection of fruits and vegetables.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 November 2023

Dong Chen, Rui Zhang and JiaCheng Jiang

This study aims to investigate the morphology and physicochemical properties of BiOBr/Polyvinylidene fluoride (PVDF) composite membranes and the differences in the properties of…

Abstract

Purpose

This study aims to investigate the morphology and physicochemical properties of BiOBr/Polyvinylidene fluoride (PVDF) composite membranes and the differences in the properties of BiOBr/PVDF composite membranes made by adding different precursor ratios during the casting process.

Design/methodology/approach

In this paper, sodium bromide and Bi(NO3)3 were used as precursors for the preparation of BiOBr photocatalysts, and PVDF membranes were modified by using the phase conversion method in conjunction with the in situ deposition method to produce BiOBr/PVDF hydrophilic composite membranes with both membrane separation and photocatalytic capabilities.

Findings

The characterization results confirmed that the composites were successfully and homogeneously co-mingled in the PVDF membranes. The related performance of the composite membrane was tested, and it was found that the composite membrane with the optimal precursor incorporation ratio had good photocatalytic efficiency and antipollution ability; the removal efficiencies of methyl orange, rhodamine B and methylene blue were 80.43%, 85.02% and 86.94%, respectively, in 2.5 h. The photocatalytic efficiency of composite membranes with different precursor ratios increased and then decreased with the increase of the precursor addition ratio.

Originality/value

The composite membrane is prepared by phase conversion method with in situ deposition method, and the BiOBr material has unique advantages for the degradation of organic dyes. The comprehensive experimental data can be known that the composite membrane prepared in this paper has high degradation efficiency and good durability for organic dyes.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 309