Search results

1 – 10 of 203
Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Shun Cai, Meng-Jia Jin, He Hao and Jian-Xin Shen

The purpose of this paper is to comparatively study a synchronous reluctance machine (SynRM) and a permanent magnet assisted synchronous reluctance machine (PMASynRM) as…

Abstract

Purpose

The purpose of this paper is to comparatively study a synchronous reluctance machine (SynRM) and a permanent magnet assisted synchronous reluctance machine (PMASynRM) as alternatives of the interior permanent magnet synchronous machine (IPMSM), and to investigate the performance and conclude both advantages and disadvantages.

Design/methodology/approach

A unified mathematical model is established for the IPMSM, SynRM and PMASynRM. Then finite element method (FEM) is used to compare the electromagnetic performance. Permeability-frozen method is utilized to distinguish basic electromagnetic torque and reluctance torque.

Findings

The PMASynRM can improve the power factor of the SynRM, overcome the drawback of the IPMSM in the high-speed flux-weakening region and is more proper to operate over a wide speed region. The SynRM is mechanically robust for lacking of the permanent magnets, and the PMASynRM can keep similar rotor stress as the SynRM by optimizing the magnets. Assembly of the SynRM is the simplest, and the economic performance of the SynRM and PMASynRM could be much better than the IPMSM which even uses ferrite magnets.

Practical/implications

The SynRM can produce identical torque and efficiency compared with the IPMSM except the poor power factor. The poor power factor could be improved by adopting the PMASynRM, which is proved to be able to act as an alternative of the IPMSM for low-cost high-performance application.

Originality/value

This paper provides the theoretical model of the IPMSM, SynRM and PMASynRM in a unified format. The electromagnetic, mechanical and economic performances of the three kinds of synchronous motors are compared comprehensively. Then, both the advantages and disadvantages are summarized.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 September 2008

Ayman M. EL‐Refaie and Thomas M. Jahns

The purpose of this paper is to provide a comparison of synchronous permanent magnet machine types for wide constant power speed range operation.

1317

Abstract

Purpose

The purpose of this paper is to provide a comparison of synchronous permanent magnet machine types for wide constant power speed range operation.

Design/methodology/approach

A combination of analytical models and finite element analysis is used to conduct this study.

Findings

The paper has presented a detailed comparison between various types of synchronous PM machines for applications requiring a wide speed range of constant‐power operation. Key observations include: surface permanent magnet (SPM) and interior permanent magnet (IPM) machines can both be designed to achieve wide speed ranges of constant‐power operation. SPM machines with fractional‐slot concentrated windings offer opportunities to minimize machine volume and mass because of their short winding end turns and techniques for achieving high‐slot fill factors via stator pole segmentation. High back‐emf voltage at elevated speeds is a particular issue for SPM machines, but also poses problems for IPM machine designs when tight maximum limits are applied. Magnet eddy‐current losses pose a bigger design issue for SPM machines, but design techniques can be applied to significantly reduce the magnitude of these losses. Additional calculations not included here suggest that the performance characteristics of the inverters accompanying each of the four PM machines are quite similar, despite the differences in machine pole number and electrical frequency.

Research limitations/implications

The paper is targeting traction applications where a very wide speed range of constant‐power operation is required.

Practical implications

Results presented are intended to provide useful guidelines for engineers faced with choosing the most appropriate PM machine for high‐constant power speed ratio applications. As in most real‐world drive design exercises, the choice of PM machine type involves several trade‐offs that must be carefully evaluated for each specific application.

Originality/value

The paper provides a comprehensive comparison between different types of synchronous PM machines, which is very useful in determining the most suitable type for various applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 July 2019

Roberto Eduardo Quintal-Palomo, Maciej Gwozdziewicz and Mateusz Dybkowski

The purpose of this paper is to obtain an accurate methodology for modelling and analysis of the permanent magnet synchronous generator connected to power electronic components.

Abstract

Purpose

The purpose of this paper is to obtain an accurate methodology for modelling and analysis of the permanent magnet synchronous generator connected to power electronic components.

Design/methodology/approach

This paper presents the methodology of the co-simulation of a permanent magnet synchronous generator. It combines Simulink, Maxwell and Simplorer software to demonstrate the electrical machine behaviour connected with the power electronics’ circuit. The finite element analysis performed on the designed machine exhibit a more accurate behaviour over simplified Simulink models. Results between both simulation and co-simulation are compared to measurements.

Findings

The co-simulation approach offers a more accurate depiction of the machine behaviour and its interaction with the non-linear circuits.

Research limitations/implications

This paper focuses on the interior permanent magnet type of PMSG and its interaction with a passive rectifier (nonlinear circuit).

Practical implications

The advanced capabilities of the co-simulation method allow to analyse more variations (geometry, materials, etc.), and its interaction with non-linear circuits, than previous simulation techniques.

Originality/value

The co-simulation as a tool for analysis and design of systems interconnected with unconventional and conventional electrical machines and prototypes, and the comparison of the obtained results with classical analysis and design methods, against measurements obtained from the prototype.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

Haiwei Cai, Bo Guan, Longya Xu and Woongchul Choi

The purpose of this paper is to present optimally designed synchronous reluctance machine (SynRM) to demonstrate the feasibility of eliminating the use of rare earth permanent

206

Abstract

Purpose

The purpose of this paper is to present optimally designed synchronous reluctance machine (SynRM) to demonstrate the feasibility of eliminating the use of rare earth permanent magnet (PM) in electric machine for vehicle traction applications.

Design/methodology/approach

A typical rare earth interior permanent magnet (IPM) machine is used as the benchmark to conduct the optimal design study. Based on the flux distribution, major changes are made to the rotor lamination design. Enhanced torque production and lower torque ripple are specifically targeted as the two main objectives of the proposed design approach.

Findings

As a result, the optimally designed SynRM can achieve performance very close to that of the benchmark PM machine with a potential for further improvement.

Originality/value

Discussions of IPM replacement by optimally designed SynRM in electrical and hybrid electrical vehicles are given in terms of performance and cost.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Y. Guan, Z.Q. Zhu, I.A.A. Afinowi, J.C. Mipo and P. Farah

The purpose of this paper is to minimize the optimization parameter number of synchronous reluctance machine (SynRM) and permanent magnet (PM) assisted SynRM, and compare their…

Abstract

Purpose

The purpose of this paper is to minimize the optimization parameter number of synchronous reluctance machine (SynRM) and permanent magnet (PM) assisted SynRM, and compare their relative merits with interior permanent magnet (IPM) machine for electric vehicle applications, in terms of electromagnetic performance and material cost.

Design/methodology/approach

The analysis of electromagnetic performance is based on finite element analysis, by using software MAXWELL. The genetic algorithm is utilized for optimization.

Findings

The rotor design of SynRM can be significantly simplified by imposing some reasonable conditions. The number of rotor design parameters can be reduced to three. The electromagnetic performance of SynRM is much poorer than that of IPM, although the material cost is much cheaper, approximately one-third of IPM. The ferrite-SynRM is competitive and even better than IPM especially for high electric loading, in terms of torque capability, torque-speed characteristic, power factor, threshold speed and efficiency. In addition, ferrite-assisted SynRM has great advantage over IPM in material cost, 55 percent cheaper. The performance of NdFeB-assisted SynRM is close to IPM in terms of torque capability, torque-speed characteristic, power factor, torque ripple and efficiency. The material cost of NdFeB-assisted SynRM is ∼25 percent lower than IPM.

Originality/value

Some conditions, which can simplify the optimization of SynRM rotor, are discussed. The electromagnetic performances and material costs of SynRM, ferrite-assisted, NdFeB-assisted SynRMs and IPM are quantitatively compared and discussed.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2018

Ya Li, Xiping Liu and Zhangqi Liu

This paper aims to present an interior permanent magnet synchronous machine (IPMSM) with double-layer PMs used for electric vehicles, of which the integrated simulation of…

Abstract

Purpose

This paper aims to present an interior permanent magnet synchronous machine (IPMSM) with double-layer PMs used for electric vehicles, of which the integrated simulation of electromagnetic field, stress field and temperature field are analyzed.

Design/methodology/approach

Some electromagnetic characteristics including iron loss, efficiency and flux linkage are obtained by finite element analysis. The mechanical strength of rotor at the maximum speed and the temperature rise at the rated load are calculated by three-dimensional finite element analysis (FEA).

Findings

The results show that the presented IPMSM can work with sufficient mechanical strength, machine temperature rise and high efficiency during field-weakening operation. The experiments were carried out to verify the FEA, and acceptable results can be achieved.

Originality/value

This paper proposed a novel IPMSM with the double-layer permanent magnets, which is designed and checked by the multi-physics fields, and the high efficiency in all operational regions can be achieved for this machine.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 November 2016

Xiping Liu, Ya Li, Zhangqi Liu, Tao Ling and Zhenhua Luo

The purpose of this paper is to propose a permanent magnet-assisted synchronous reluctance machine (PMASynRM) using ferrite magnets with the same power density as rare-earth PM…

Abstract

Purpose

The purpose of this paper is to propose a permanent magnet-assisted synchronous reluctance machine (PMASynRM) using ferrite magnets with the same power density as rare-earth PM synchronous motors used in Toyota Prius 2010.

Design/methodology/approach

A novel rotor structure with rectangular PMs is discussed with respect to the demagnetization of ferrite magnets and mechanical strength. Some electromagnetic characteristics including torque, output power, loss and efficiency are calculated by 2D finite element analysis.

Findings

The results of the analysis show that a high power density and high efficiency for PMASynRM can be achieved using ferrite magnets.

Originality/value

This paper proposes a novel rotor structure of PMASynRM with low-cost ferrite magnets that achieves high power density as permanent machines with rare-earth PMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 July 2008

M.P. Donsión

This paper aims to apply a two‐axis model for accurate representation of the characteristics of permanent magnet synchronous motors (PMSM) of the interior type.

Abstract

Purpose

This paper aims to apply a two‐axis model for accurate representation of the characteristics of permanent magnet synchronous motors (PMSM) of the interior type.

Design/methodology/approach

For a three‐phase PMSM, it uses a voltage source inverter with six power transistors with independent switching and PSIM software with Matlab for checking, by simulation, how some parameters influence the start process.

Findings

It was found that pulsating components generate the synchronizing torque.

Originality/value

The paper provides a model for accurate representation of the characteristics of permanent magnet motors.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

Ikhlas Bouzidi, Ahmed Masmoudi and Nicola Bianchi

This paper aims to the design and feature investigation of an interior permanent magnet synchronous machine (IPMSM) dedicated to propulsion applications.

Abstract

Purpose

This paper aims to the design and feature investigation of an interior permanent magnet synchronous machine (IPMSM) dedicated to propulsion applications.

Design/methodology/approach

The design approach as well as the performance investigation of the studied machine are based on a two‐dimensional finite element analysis. This latter is extended to a comparison study with other rotor topologies.

Findings

It has been found that the studied IPMSM offers higher performances than the usual PM machine topologies. This highlights the fact that the rotor design greatly affects the performance of PM machines.

Research limitations/implications

Many continuations of the developed works shall be treated in the future, such as: an optimization of the IPMSM design, an extension of the optimization to the machine‐inverter association, and a validation of the foreseen performance by experiments carried out on a prototype of the IPMSM.

Practical implications

The machine under study could be integrated in electric propulsion applications especially as a wheel‐mounted motor.

Originality/value

The paper treats the design and performance investigation of a new topology of IPM machines. It is a five‐phase concentrated winding synchronous machine with permanent magnet buried in an outer rotor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 203