Search results

1 – 10 of 293
Article
Publication date: 5 July 2019

Roberto Eduardo Quintal-Palomo, Maciej Gwozdziewicz and Mateusz Dybkowski

The purpose of this paper is to obtain an accurate methodology for modelling and analysis of the permanent magnet synchronous generator connected to power electronic components.

Abstract

Purpose

The purpose of this paper is to obtain an accurate methodology for modelling and analysis of the permanent magnet synchronous generator connected to power electronic components.

Design/methodology/approach

This paper presents the methodology of the co-simulation of a permanent magnet synchronous generator. It combines Simulink, Maxwell and Simplorer software to demonstrate the electrical machine behaviour connected with the power electronics’ circuit. The finite element analysis performed on the designed machine exhibit a more accurate behaviour over simplified Simulink models. Results between both simulation and co-simulation are compared to measurements.

Findings

The co-simulation approach offers a more accurate depiction of the machine behaviour and its interaction with the non-linear circuits.

Research limitations/implications

This paper focuses on the interior permanent magnet type of PMSG and its interaction with a passive rectifier (nonlinear circuit).

Practical implications

The advanced capabilities of the co-simulation method allow to analyse more variations (geometry, materials, etc.), and its interaction with non-linear circuits, than previous simulation techniques.

Originality/value

The co-simulation as a tool for analysis and design of systems interconnected with unconventional and conventional electrical machines and prototypes, and the comparison of the obtained results with classical analysis and design methods, against measurements obtained from the prototype.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 March 2023

Michal Cichowicz, Wojciech Pilecki, Marcin Wardach, Paweł Prajzendanc, Kamil Cierzniewski and Ryszard Palka

This paper aims to present the project of a permanent magnet synchronous machine which can be used as generator in the vertical axis wind turbine.

Abstract

Purpose

This paper aims to present the project of a permanent magnet synchronous machine which can be used as generator in the vertical axis wind turbine.

Design/methodology/approach

In the study, finite element analysis was used to perform simulation research of electrical machines. Based on the simulation studies, an experimental model was built. The paper presents also selected experimental results.

Findings

During the research, it was found that the radial arrangement of the permanent magnets is more favorable than the tangential one for the selected structure of the generator with permanent magnets.

Research limitations/implications

During the experimental research, a problem was encountered involving the correct control of the constructed generator at low rotational speeds.

Practical implications

The proposed solution can be used in low-speed vertical axis wind turbines.

Social implications

The presented research fits the global trend toward the use of alternative and renewable energy sources.

Originality/value

The paper presents new simulation studies of two low-speed generator topologies. The results for the radial and tangential arrangement of the permanent magnets in the rotor were verified. Based on this research, an experimental prototype of a generator for a slow-speed vertical axis wind turbine was built.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

Z.Q. Zhu and Jiabing Hu

Wind energy has matured to a level of development at which it is ready to become a generally accepted power generation technology. The aim of this paper is to provide a brief…

1661

Abstract

Purpose

Wind energy has matured to a level of development at which it is ready to become a generally accepted power generation technology. The aim of this paper is to provide a brief review of the state of the art in the area of electrical machines and power‐electronic systems for high‐power wind energy generation applications. As the first part of this paper, latest market penetration, current technology and advanced electrical machines are addressed.

Design/methodology/approach

After a short description of the latest market penetration of wind turbines with various topologies globally by the end of 2010 is provided, current wind power technology, including a variety of fixed‐ and variable‐speed (in particular with doubly‐fed induction generator (DFIG) and permanent magnet synchronous generator (PMSG) supplied with partial‐ and full‐power converters, respectively) wind power generation systems, and modern grid codes, is presented. Finally, four advanced electrical‐machine systems, viz., brushless DFIG, open winding PMSG, dual/multi 3‐phase stator‐winding PMSG and magnetic‐gear outer‐rotor PMSG, are identified with their respective merits and challenges for future high‐power wind energy applications.

Findings

For the time being, the gear‐drive DFIG‐based wind turbine is significantly dominating the markets despite its defect caused by mechanical gears, slip rings and brush sets. Meanwhile, direct‐drive synchronous generator, especially utilizing permanent magnets on its rotor, supplied with a full‐capacity power converter has become a more effective solution, particularly in high‐power offshore wind farm applications.

Originality/value

This first part of the paper reviews the latest market penetration of wind turbines with a variety of mature topologies, by summarizing their advantages and disadvantages. Four advanced electrical‐machine systems are selected and identified by distinguishing their respective merits and challenges for future high‐power wind energy applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Yonghong Xia, Junbo Liu, Bo Xu and Hongjian Wu

The purpose of this paper is to propose a novel hybrid excitation permanent magnet synchronous generator (HEPMSG) utilizing tooth harmonic for excitation, the structural features…

Abstract

Purpose

The purpose of this paper is to propose a novel hybrid excitation permanent magnet synchronous generator (HEPMSG) utilizing tooth harmonic for excitation, the structural features and operation principle of which are also described.

Design/methodology/approach

To obtain the operation performance quickly, this paper derives the mathematical model of the machine system represented by circuit, and analyzes the operation mode of rectifier circuit in the tooth harmonic excitation system, then the standard state equations for each operation mode are obtained. Combining the inductance parameter of this machine with the load resistance and inductance, the armature current waveform, the field current waveform and tooth harmonic winding current waveform are obtained by using the numerical method to solve the standard state equation.

Findings

Comparing with the experimental results, the availability of the principle and the validity of the model of the machine system are verified.

Practical implications

This HEPMSG is a new brushless self-excited and self-regulated generator, which is suitable for an independent power source.

Originality/value

Unlike the existing hybrid excitation permanent magnet machine, this HEPMSG utilized the inherent tooth harmonic EMF of the rotor to adjust the air-gap magnetic field of the permanent magnet machine.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 October 2022

Eyyüp Öksüztepe, Ufuk Kaya and Hasan Kurum

More electric aircraft (MEA) is defined as the extensive usage of electric power in aircraft. The demand for electric power in new generation aircraft rises due to environmental…

Abstract

Purpose

More electric aircraft (MEA) is defined as the extensive usage of electric power in aircraft. The demand for electric power in new generation aircraft rises due to environmental and economic considerations. Hence, efficient and reliable starter/generators (SGs) are trending nowadays. The conventional main engine starting system and power generation system can be replaced with an individual SG. The constraints of the SG should be investigated to handle the aviation requirements. Even though the SG is basically an electric machine, it requires a multidisciplinary study consisting of electromagnetic, thermal and mechanical works to cope with aviation demands. This study aims to review conventional and new-generation aircraft SGs from the perspective of electric drive applications.

Design/methodology/approach

First of all, the importance of the MEA concept has been briefly explained. Also, the historical development and the need for higher electrical power in aircraft have been indicated quantitatively. Considering aviation requirements, the candidate electrical machines for aircraft SG have been determined by the method of scoring. Those machines are compared over 14 criteria, and the most predominant of them are specified as efficiency, power density, rotor thermal tolerance, high-speed capability and machine complexity. The features of the most suitable electrical machine are pointed out with data gathered from empirical studies. Finally, the trending technologies related to efficient SG design have been explained with numeric datasets.

Findings

The induction motor, switched reluctance motor and permanent magnet synchronous motor (PMSM) are selected as the candidate machines for SGs. It has been seen that the PMSM is the most preferable machine type due to its efficient operation in a wide range of constant power and speed. It is computationally proven that the using amorphous magnetic alloys in SG cores increases the machine efficiency more. Also, the benefits of high voltage direct current (HVDC) use in aircraft have been explained by a comparison of different aircraft power generation standards. It is concluded that the HVDC use in aircraft decreases total cable weight and increases aircraft operation efficiency. The thermal and mechanical tolerance of the SG is also vital. It has been stated that the liquid cooling techniques are suitable for SGs.

Originality/value

The demand for electrical power in new generation aircraft is increasing. The SG can be used effectively and efficiently instead of conventional systems. To define requirements, constraints and suggestions, this study investigates the SGs from the perspective of electric drive applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 November 2021

Ali Muhammad, Faisal Khan, Muhammad Yousuf and Basharat Ullah

The purpose of this paper is to modernize the generator system of wind turbine concept that not only improves the efficiency and power density but also reduces the system cost…

Abstract

Purpose

The purpose of this paper is to modernize the generator system of wind turbine concept that not only improves the efficiency and power density but also reduces the system cost making design simpler and less expensive, especially in large-scale production.

Design/methodology/approach

This paper presents a new permanent magnet transverse flux generator (PMTFG) for wind energy production. The key feature of its composition is the double armature coil in a semi-closed stator core. The main structural difference of the presented design is the use of double coil in the same space of semi-closed stator core and reduced number of stator pole pairs and rotor magnets from 12/24 to 10/20. 3D simulations are performed using finite element analysis (FEA) to measure induced voltage and magnetic field distribution at no load. The FEA is performed to quantify the change in flux linkage, induced voltage and output power as a function of different speeds and load current.

Findings

Results show that PMTFG with double coil configuration has improved electromagnetic performance in terms of flux linkage, induced voltage, output power and efficiency. The power density of 10/20 PMTFG with the double coil is 0.0524 KW/Kg, about an 18% increase compared to the conventional design.

Research limitations/implications

The proposed PMTFG is highly recommended for direct drive applications such as wind power.

Originality/value

Four models are simulated by FEA with single and double coil configuration, and load analysis is performed on all simulated models. Finally, results are compared with conventional PMTFG.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 August 2018

Cezary Jedryczka, Wojciech Szelag, Michal Jan Gwozdz and Michal Krystkowiak

The purpose of this paper is to present the electromagnetic phenomena in permanent magnet synchronous generator (PMSG) suited for wind turbines with uniquely designed system of…

Abstract

Purpose

The purpose of this paper is to present the electromagnetic phenomena in permanent magnet synchronous generator (PMSG) suited for wind turbines with uniquely designed system of two windings. The machine’s windings allow for application of a reliable and low-cost power electronic converter.

Design/methodology/approach

The 2D field-circuit model has been developed and used in comparative analysis between reference design PMSG with concentrated three-phase winding and two-windings PMSG to facilitate application of a low-cost and reliable AC/DC power electronic converter. The paper focuses on comparison of radial force density, core losses and torque waveforms in the proposed and reference machine with sinusoidal load currents.

Findings

The usefulness of the proposed approach for analysis of the two-winding PMSG performance by means of the field-circuit model has been proved. The obtained results show practically no drop off of performance of proposed machine in relation to reference PMSG. Moreover, it has been shown that both machines are characterized by the same level of radial force density. Therefore, the lower cost and reliable power electronic converts can be applied in the wind power energy systems (WPES) by slightly more complex design of the stator winding.

Originality/value

The proposed 2D field-circuit numerical model makes it possible to analyze the performance of the star-delta winding PMSG dedicated to be loaded by the AC to DC converter specially designed to achieve high reliability and efficiency of the system. Presented comparative studies on generator performance show that proposed modulated synchronous flux generator characterize with the same output torque at given supply current and core losses level like conventional PMSG with sinusoidal load.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 January 2020

Sayyed Ali Akbar Shahriari, Mohammad Mohammadi and Mahdi Raoofat

The purpose of this study is to propose a control scheme based on state estimation algorithm to improve zero or low-voltage ride-through capability of permanent magnet synchronous

Abstract

Purpose

The purpose of this study is to propose a control scheme based on state estimation algorithm to improve zero or low-voltage ride-through capability of permanent magnet synchronous generator (PMSG) wind turbine.

Design/methodology/approach

Based on the updated grid codes, during and after faults, it is necessary to ensure wind energy generation in the network. PMSG is a type of wind energy technology that is growing rapidly in the network. The control scheme based on extended Kalman filter (EKF) is proposed to improve the low voltage ride-through (LVRT) capability of the PMSG. In the control scheme, because the state estimation algorithm is applied, the requirement of DC link voltage measurement device and generator speed sensor is removed. Furthermore, by applying this technique, the extent of possible noise on measurement tools is reduced.

Findings

In the proposed control scheme, zero or low-voltage ride-through capability of PMSG is enhanced. Furthermore, the requirement of DC link voltage measurement device and generator speed sensor is removed and the amount of possible noise on the measurement tools is minimized. To evaluate the ability of the proposed method, four different cases, including short and long duration short circuit fault close to PMSG in the presence and absence of measurement noise are studied. The results confirm the superiority of the proposed method.

Originality/value

This study introduces EKF to enhance LVRT capability of a PMSG wind turbine.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2012

Łukasz Drązikowski and Włodzimierz Koczara

This article seeks to present the simple and easy to manufacture design of a permanent magnet generator based on coreless windings. An example is shown of basic calculations based…

Abstract

Purpose

This article seeks to present the simple and easy to manufacture design of a permanent magnet generator based on coreless windings. An example is shown of basic calculations based on an equivalent magnetic circuit. Finally, a description of a 20 kW prototype of PMSG is presented based on rectangular magnets which contains mechanical design and experimental results.

Design/methodology/approach

The analysis presents flux dependence using several parameters such as: magnet's grade and size in comparison with coil and air‐gap dimensions. The second part of the article concentrates on simulation results of Finite Element Method analysis (FEM) that clearly shows the flux distribution for different magnet shapes – trapezoidal and rectangular.

Findings

The presented topology of the machine has several advantages, e.g. there is no starting and cogging torque which is very important especially for wind power systems because of the start up point of the turbine. Moreover, it is cheap and easy to manufacture because of ironless technology in stator. The generator can be produced in the range of single watts up to hundreds of kilo watts of power in multi disk operation.

Research limitations/implications

The ironless technology applied to the stator, results in the need for using stronger magnets in comparison with a classic iron‐core permanent magnet machine.

Practical implications

This axial‐flux machine seems to be very interesting for low speed power generation systems such as wind and water turbines. Cost effective permanent magnet generator can be used for local power generation (e.g. heating). The generator can also be connected to the main grid through a special grid‐tie‐inverter.

Originality/value

The article presents the simple and rarely presented topology and describes a few methods of optimisation of the parameters to achieve maximum power.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 November 2021

Jun Zhu, Shuaihui Li, Xiangwei Guo, Huaichun Nan and Ming Yang

This paper aims to study the relationship between leakage flux coefficient and the coreless axial magnetic field permanent magnet synchronous generator (AFPMSG) size and obtain…

Abstract

Purpose

This paper aims to study the relationship between leakage flux coefficient and the coreless axial magnetic field permanent magnet synchronous generator (AFPMSG) size and obtain the expressions of leakage flux coefficient.

Design/methodology/approach

In this paper, a magnetic circuit model of coreless AFPMSG is proposed. Four kinds of leakage permeances of permanent magnet (PM) are considered, and the expression of no-load leakage flux coefficient is obtained. Solving the integral region of leakage permeances by generator size, which improves the accuracy of the solution.

Findings

Finite element method and magnetic circuit method are used to obtain the no-load leakage flux coefficient and its variation trend charts with the change of pole arc coefficient, air gap length and PM thickness. The average errors of the two methods are 2.835%, 0.84% and 1.347%, respectively. At the same time, the results of single-phase electromotive force obtained by magnetic circuit method, three dimensional finite element method and prototype experiments are 19.36 V, 18.82 V and 19.09 V, respectively. The results show that the magnetic circuit method is correct in calculating the no-load leakage flux coefficient.

Originality/value

The special structure of the coreless AFPMSG is considered in the presented equivalent magnetic circuit and equations, and the equations in this paper can be applied for leakage flux evaluating purposes and initial parameter selection of the coreless AFPMSG.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 293