Search results

1 – 10 of 26
Article
Publication date: 7 November 2016

Xiping Liu, Ya Li, Zhangqi Liu, Tao Ling and Zhenhua Luo

The purpose of this paper is to propose a permanent magnet-assisted synchronous reluctance machine (PMASynRM) using ferrite magnets with the same power density as rare-earth PM…

Abstract

Purpose

The purpose of this paper is to propose a permanent magnet-assisted synchronous reluctance machine (PMASynRM) using ferrite magnets with the same power density as rare-earth PM synchronous motors used in Toyota Prius 2010.

Design/methodology/approach

A novel rotor structure with rectangular PMs is discussed with respect to the demagnetization of ferrite magnets and mechanical strength. Some electromagnetic characteristics including torque, output power, loss and efficiency are calculated by 2D finite element analysis.

Findings

The results of the analysis show that a high power density and high efficiency for PMASynRM can be achieved using ferrite magnets.

Originality/value

This paper proposes a novel rotor structure of PMASynRM with low-cost ferrite magnets that achieves high power density as permanent machines with rare-earth PMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Shun Cai, Meng-Jia Jin, He Hao and Jian-Xin Shen

The purpose of this paper is to comparatively study a synchronous reluctance machine (SynRM) and a permanent magnet assisted synchronous reluctance machine (PMASynRM) as…

Abstract

Purpose

The purpose of this paper is to comparatively study a synchronous reluctance machine (SynRM) and a permanent magnet assisted synchronous reluctance machine (PMASynRM) as alternatives of the interior permanent magnet synchronous machine (IPMSM), and to investigate the performance and conclude both advantages and disadvantages.

Design/methodology/approach

A unified mathematical model is established for the IPMSM, SynRM and PMASynRM. Then finite element method (FEM) is used to compare the electromagnetic performance. Permeability-frozen method is utilized to distinguish basic electromagnetic torque and reluctance torque.

Findings

The PMASynRM can improve the power factor of the SynRM, overcome the drawback of the IPMSM in the high-speed flux-weakening region and is more proper to operate over a wide speed region. The SynRM is mechanically robust for lacking of the permanent magnets, and the PMASynRM can keep similar rotor stress as the SynRM by optimizing the magnets. Assembly of the SynRM is the simplest, and the economic performance of the SynRM and PMASynRM could be much better than the IPMSM which even uses ferrite magnets.

Practical/implications

The SynRM can produce identical torque and efficiency compared with the IPMSM except the poor power factor. The poor power factor could be improved by adopting the PMASynRM, which is proved to be able to act as an alternative of the IPMSM for low-cost high-performance application.

Originality/value

This paper provides the theoretical model of the IPMSM, SynRM and PMASynRM in a unified format. The electromagnetic, mechanical and economic performances of the three kinds of synchronous motors are compared comprehensively. Then, both the advantages and disadvantages are summarized.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 March 2022

Yuki Hidaka

The purpose of this paper is to develop a multi-material topology optimization method for permanent magnet-assisted synchronous reluctance motors.

Abstract

Purpose

The purpose of this paper is to develop a multi-material topology optimization method for permanent magnet-assisted synchronous reluctance motors.

Design/methodology/approach

In the proposed method, the optimization procedure consists of two steps. In the first step, the entire rotor area was selected for the design region and the distribution of the core and air materials was optimized. In the second step, the design region was limited to the air region of the former solution and the distribution of magnets and cores or magnets and air was optimized.

Findings

Because of the two-step process of the proposed method, the design parameters can be reduced compared to the conventional method. As a result, this study can prevent the solution space from becoming more complex and superior solutions can be founded effectively.

Research limitations/implications

Since limited case study is denoted in this paper, much more case studies, for example, three-dimensional optimization problems, are needed to be discussed.

Practical implications

The optimal solutions obtained by the proposed method have a smaller magnet volume and higher average torque than that of the conventional method.

Originality/value

In the proposed methods, optimization methodology, which consists of two-steps process, is differed from the conventional method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 April 2022

Ali Jamali Fard and Mojtaba Mirsalim

During the design process of synchronous reluctance motors (SynRMs), one crucial step, after its main dimensioning, is optimizing the rotor geometry for maximum average torque and…

114

Abstract

Purpose

During the design process of synchronous reluctance motors (SynRMs), one crucial step, after its main dimensioning, is optimizing the rotor geometry for maximum average torque and minimum torque ripple. However, because of the complexity of rotor flux-barrier layers geometry, the number of rotor geometrical parameters is high and this step could be quite complex and time-consuming. To obtain a good performance, one needs a robust algorithm to optimize the rotor geometry. The purpose of this paper is to present a sequential iterative method for rotor shape optimization in SynRMs based on the per-unit rotor model to maximize the average torque and minimize the torque ripple.

Design/methodology/approach

In the presented method, at first, rotor geometrical parameters are classified into several groups based on their geometrical similarities, and then optimization is done on these individual groups iteratively. The method starts with an arbitrary feasible rotor geometry and proceeds to optimize it. Because the method’s performance depends on initial rotor geometry, different cases are studied to investigate the convergence and robustness of the method. The MATLAB software is used to implement the optimization algorithm, and the ANSYS Maxwell software is used for the finite element analysis.

Findings

The performance of the proposed method is studied on a three-phase 0.75 kW-1,500 rpm permanent magnet assisted SynRM. The results show that the method improves the average torque while reducing the torque ripple. Even if the method starts with an inappropriate initial rotor geometry, it is robust enough and converges within an acceptable number of iterations.

Originality/value

The value of this paper is in introducing a per-unit rotor model. When the authors optimize the rotor geometry for a specific motor rating, it can be scaled up or down for other ratings with little effort. In this work, the number of rotor poles is four and the number of rotor flux-barrier layers per pole is three. Other combinations could be analyzed in future studies.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2015

K. Wang, Z.Q. Zhu, G. Ombach, M. Koch, S. Zhang and J. Xu

The purpose of this paper is to investigate the influence of stator and rotor pole number combinations together with the flux-barrier layers number on the performance of…

Abstract

Purpose

The purpose of this paper is to investigate the influence of stator and rotor pole number combinations together with the flux-barrier layers number on the performance of synchronous reluctance machine with emphasis on output torque capability and torque ripple.

Design/methodology/approach

AC synchronous reluctance machine (SynRM) or permanent magnet assisted SynRM presently receives a great deal of interest, since there is less or even no rare-earth permanent magnet in the rotor. Most of SynRM machines employ a stator that is originally designed for a standard squirrel cage induction motor for a similar output rating and application, or the SynRM machine with 24-slot, four-pole are often directly chosen for investigation in most of the available literature. Therefore, it is necessary to investigate the influence of stator and rotor pole number combinations together with the flux-barrier layers number on the performance of SynRM machine with emphasis on output torque capability and torque ripple.

Findings

The average torque decreases with the increase of the pole numbers but remain almost constant when employing different stator slot numbers but with the same pole number. In addition, the torque ripple decreases significantly with the increase of the stator slot number. The machine with double-layer flux-barrier in the rotor has the biggest average torque, while the machines with three- and four-layer flux-barrier in the rotor have almost the same average torque but their value is slightly smaller than that of machine with double-layer flux-barrier. However, the machine with three-layer flux-barrier has the lowest torque ripple but the highest torque ripple exists in the machine with double-layer flux-barrier.

Research limitations/implications

The purely sinusoidal currents are applied in this analysis and the effects of harmonics in the current on torque ripple are not considered in this application.

Originality/value

This paper has analyzed the torque ripple and average torque of SynRMs with considering slot/pole number combinations together with the flux-barrier number.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2015

Nicola Bianchi, Luigi Alberti and Omar Bottesi

The purpose of this paper is to compare different types of electric motor drives for high-efficiency applications: an induction motor (IM) drive, a synchronous reluctance motor…

Abstract

Purpose

The purpose of this paper is to compare different types of electric motor drives for high-efficiency applications: an induction motor (IM) drive, a synchronous reluctance motor drive and a permanent magnet-assisted synchronous reluctance motor drive. An innovative field-oriented analysis technique is applied to estimate the performance of the IM drive. This method of analysis is particularly advantageous in comparing the IM performance to those of synchronous machines.

Design/methodology/approach

The comparison among the capabilities of the three electric drives is carried out combining both analytical and finite element methods.

Findings

From the analysis, it results that the REL motor exhibits higher torque density than IM, but lower losses since there are no Joule losses in the rotor. On the contrary, the REL motor exhibits a very power factor, which corresponds to a high-volt-ampere ratings of the inverter that supplies the motor itself.

Originality/value

A new analysis technique is adopted to investigate and compare the energy efficiency performance of different machines.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Y. Guan, Z.Q. Zhu, I.A.A. Afinowi, J.C. Mipo and P. Farah

The purpose of this paper is to minimize the optimization parameter number of synchronous reluctance machine (SynRM) and permanent magnet (PM) assisted SynRM, and compare their…

Abstract

Purpose

The purpose of this paper is to minimize the optimization parameter number of synchronous reluctance machine (SynRM) and permanent magnet (PM) assisted SynRM, and compare their relative merits with interior permanent magnet (IPM) machine for electric vehicle applications, in terms of electromagnetic performance and material cost.

Design/methodology/approach

The analysis of electromagnetic performance is based on finite element analysis, by using software MAXWELL. The genetic algorithm is utilized for optimization.

Findings

The rotor design of SynRM can be significantly simplified by imposing some reasonable conditions. The number of rotor design parameters can be reduced to three. The electromagnetic performance of SynRM is much poorer than that of IPM, although the material cost is much cheaper, approximately one-third of IPM. The ferrite-SynRM is competitive and even better than IPM especially for high electric loading, in terms of torque capability, torque-speed characteristic, power factor, threshold speed and efficiency. In addition, ferrite-assisted SynRM has great advantage over IPM in material cost, 55 percent cheaper. The performance of NdFeB-assisted SynRM is close to IPM in terms of torque capability, torque-speed characteristic, power factor, torque ripple and efficiency. The material cost of NdFeB-assisted SynRM is ∼25 percent lower than IPM.

Originality/value

Some conditions, which can simplify the optimization of SynRM rotor, are discussed. The electromagnetic performances and material costs of SynRM, ferrite-assisted, NdFeB-assisted SynRMs and IPM are quantitatively compared and discussed.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 3 June 2022

Peter Gangl, Stefan Köthe, Christiane Mellak, Alessio Cesarano and Annette Mütze

This paper aims to deal with the design optimization of a synchronous reluctance machine to be used in an X-ray tube, where the goal is to maximize the torque while keeping low…

Abstract

Purpose

This paper aims to deal with the design optimization of a synchronous reluctance machine to be used in an X-ray tube, where the goal is to maximize the torque while keeping low the amount of material used, by means of gradient-based free-form shape optimization.

Design/methodology/approach

The presented approach is based on the mathematical concept of shape derivatives and allows to obtain new motor designs without the need to introduce a geometric parametrization. This paper presents an extension of a standard gradient-based free-form shape optimization algorithm to the case of multiple objective functions by determining updates, which represent a descent of all involved criteria. Moreover, this paper illustrates a way to obtain an approximate Pareto front.

Findings

The presented method allows to obtain optimal designs of arbitrary, non-parametric shape with very low computational cost. This paper validates the results by comparing them to a parametric geometry optimization in JMAG by means of a stochastic optimization algorithm. While the obtained designs are of similar shape, the computational time used by the gradient-based algorithm is in the order of minutes, compared to several hours taken by the stochastic optimization algorithm.

Originality/value

This paper applies the presented gradient-based multi-objective optimization algorithm in the context of free-form shape optimization using the mathematical concept of shape derivatives. The authors obtain a set of Pareto-optimal designs, each of which is a shape that is not represented by a fixed set of parameters. To the best of the authors’ knowledge, this approach to multi-objective free-form shape optimization is novel in the context of electric machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2015

K. Wang, Z.Q. Zhu, G. Ombach, M. Koch, S. Zhang and J. Xu

The purpose of this paper is to reduce the torque ripple but not to decrease the average torque of synchronous reluctance machines by using one step or more than two axially…

Abstract

Purpose

The purpose of this paper is to reduce the torque ripple but not to decrease the average torque of synchronous reluctance machines by using one step or more than two axially laminated rotors with asymmetric flux-barrier.

Design/methodology/approach

A 24-slot four-pole synchronous reluctance machine with overlapping windings and asymmetric flux-barrier in the rotor is, first, described and designed by finite element (FE) method for maximizing average torque. The dimensions of asymmetric flux-barrier including the pole span angle and flux-barrier angle will be optimized to minimize the torque ripple and its influence on the average torque is also investigated by FE analysis. The impact of current angle on the average torque and torque ripple are also analysed. The step laminations together with the asymmetric flux-barrier are employed for further torque ripple reduction which can consider the both rotation directions.

Findings

The torque ripple of synchronous reluctance machine can be significantly reduced by employing asymmetric flux-barrier but the average torque is not reduced.

Research limitations/implications

The purely sinusoidal currents are applied in this analysis and the effects of harmonics in the current on torque ripple are not considered in this application. The 24-slot/four-pole synchronous reluctance machine with single-layer flux-barrier has been employed in this analysis, but this work can be continued to investigate the synchronous reluctance machine with multilayer flux-barrier. This asymmetric flux-barrier can be easily applied to permanent magnet (PM)-assisted synchronous reluctance machine and the interior PM machine with flux-barrier in the rotor, since the space which is used for PM insertion is the same as the SynRM machines.

Originality/value

This paper has analysed the torque ripple and average torque of synchronous reluctance machines with asymmetric flux-barrier and step laminations with asymmetric flux-barrier. The torque ripple can be reduced by this flux-barrier arrangement. The difference of this technique with the other techniques such as stator/rotor skew is that the average torque can be improved.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 September 2022

Ali Jamali Fard and Mojtaba Mirsalim

Rotor shape optimization is crucial in designing synchronous reluctance machines (SynRMs) because the machine performance is directly proportional to the rotor’s magnetic saliency…

Abstract

Purpose

Rotor shape optimization is crucial in designing synchronous reluctance machines (SynRMs) because the machine performance is directly proportional to the rotor’s magnetic saliency ratio. The rotor geometry in synchronous reluctance machines is complex, and many geometrical parameters must be optimized. When fluid flux-barrier geometry is desirable, using analytic equations to prepare the rotor geometry for finite element analysis could be tedious. This paper aims to provide a robust numerical procedure to draw the fluid flux-barrier geometry in transversally laminated radial flux inner and outer rotor SynRMs by directly solving the magnetic vector potential equation using the finite difference method..

Design/methodology/approach

In this paper, the goal is to have a robust procedure for drawing the rotor geometry for an arbitrary number of slots (Ns), poles (p) and flux-barrier layers (Nfb). Therefore, this paper targeted several combinations to investigate the performance of the proposed algorithm. The MATLAB software is used to implement the proposed algorithm. The ANSYS Maxwell software is used for counterpart finite element simulation to check the correctness of the results derived by the proposed method.

Findings

Several inner and outer rotor SynRMs considering a different number of poles and a different number of flux-barrier layers per pole are studied to investigate the performance of the proposed algorithm. Results corresponding to each case are presented, and it is shown that the method is robust, flexible and fast enough, which could be used for the generation of the rotor geometry for the finite element analysis effectively.

Originality/value

The value of the proposed algorithm is its simplicity and straightforwardness in its implementation for the preparation of the rotor geometry with the desired fluid flux-barrier layer curvature resolution suitable for the finite element analysis. The procedure presented in this paper is based on the ideal magnetic loading concept, and in future works, a similar idea could be used for linear and axial flux SynRMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 26