Search results

1 – 10 of 173
Article
Publication date: 7 March 2016

I.A.A. Afinowi, Z.Q. Zhu, Y. Guan, Jean-Claude Mipo and P. Farah

– The purpose of this paper is to comparatively study the conventional, i.e. single magnet, and novel hybrid-magnet switched-flux permanent-magnet (HMSFPM) machines.

Abstract

Purpose

The purpose of this paper is to comparatively study the conventional, i.e. single magnet, and novel hybrid-magnet switched-flux permanent-magnet (HMSFPM) machines.

Design/methodology/approach

The HMSFPM machines utilize two magnet types, i.e. low-cost ferrites and NdFeB. Thus, a set of magnet ratios (?), defined as the quotient of the NdFeB volume to the total PM volume, is introduced. This allows any desired performance and cost trade-off to be designed. Series- and parallel-excited magnet configurations are investigated using 2-dimensional finite element analysis.

Findings

The torque of the HMSFPM machines is lower than the NdFeB SFPM machine but the flux-weakening performance is improved for similar machine efficiency. If the machine dimensions are unconstrained, the HMSFPM machines can have the same torque for reduced material costs and a moderate increase in machine dimensions. Ferrite SFPM machines have the lowest cost for the same torque but a significant increase in machine dimensions is required. Finally, the series-excited HMSFPM machine is the preferred over the parallel-excited HMSFPM machine because it has superior demagnetization withstand capability.

Research limitations/implications

Mechanical and winding eddy current losses are not considered in the efficiency map calculations.

Originality/value

The NdFeB SFPM, ferrite SFPM, series-excited HMSFPM, and the parallel-excited HMSFPM machines are compared for their electromagnetic performance, flux-weakening, PM demagnetization, efficiency, and material costs.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 January 2017

Nagarajan V.S., Balaji Mahadevan, Kamaraj V., Arumugam R., Ganesh Nagarajan, Srivignesh S. and Suudharshana M.

The purpose of this paper is performance enhancement of ferrite-assisted synchronous reluctance (FASR) motor using multi-objective differential evolution (MODE) algorithm…

Abstract

Purpose

The purpose of this paper is performance enhancement of ferrite-assisted synchronous reluctance (FASR) motor using multi-objective differential evolution (MODE) algorithm, considering the significant geometric design parameters.

Design/methodology/approach

This work illustrates the optimization of FASR motor using MODE algorithm to enhance the performance of the motor considering barrier angular positions, magnet height, magnet axial length, flux barrier angles of the rotor and air gap length. In the optimization routine to determine the performance parameters, generalized regression neural network-based interpolation is used. The results of MODE are validated with multi-objective particle swarm optimization algorithm and multi-objective genetic algorithm.

Findings

The design optimization procedure developed in this work for FASR motor aims at achieving multiple objectives, namely, average torque, torque ripple and efficiency. With multiple objectives, it is essential to give the designer the tradeoff between different objectives so as to arrive at the best design suitable for the application. The results obtained in this work justify the application of the MODE approach for FASR motor to determine the various feasible solutions within the bounds of the design.

Research limitations/implications

Analysis, design and optimization of synchronous reluctance motor has been explored in detail to establish its potential for variable speed applications. In recent years, the focus is toward the electromagnetic design of hybrid configurations such as FASR motor. It is in this preview this work aims to achieve optimal design of FASR motor using multi-objective optimization approach.

Practical/implications

The results of this work will supplement and encourage the application of FASR motor as a viable alternate for variable speed drive applications. In addition, the application of MODE to arrive at better design solutions is demonstrated.

Originality/value

The approach presented in this work focuses on obtaining enhanced design of FASR motor considering average torque, torque ripple and efficiency as performance measures. The posteriori analysis of optimization provides an insight into the choice of parameters involved and their effects on the design of FASR motor. The efficacy of the optimization routine is justified in comparison with other multi-objective algorithms.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 May 2011

Thomas S. Parel, Mihai D. Rotaru, Jan K. Sykulski and Grant E. Hearn

The purpose of this paper is to optimise the cost‐based performance of a tubular linear generator and to minimise cogging forces.

Abstract

Purpose

The purpose of this paper is to optimise the cost‐based performance of a tubular linear generator and to minimise cogging forces.

Design/methodology/approach

Optimisation of a tubular linear generator with longitudinal flux topology has been undertaken using a finite element method. The computational models used have been verified experimentally.

Findings

The use of an oversized stator linear generator design as opposed to an oversized translator design has the potential to increase the output electromotive force per unit material cost by 25 per cent for slotless iron core topologies and approximately 14 per cent for air core topologies. For cogging force minimisation, optimisation of the length of the stator core is an effective technique for both oversized stator and oversized translator constructions. Comparisons of magnet materials also indicate that the higher cost of rare earth magnets to ferrites is compensated by their superior specific performances.

Originality/value

In this paper, a broader range of design parameters than in previous investigations has been optimised for the slotless iron core and air core topologies. The result relating to cogging force reduction and cost savings (in particular) has the potential to make direct drive wave energy extraction a more competitive technology in terms of reliability and cost.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

Jianxin Shen, Dan Shi, Canfei Wang, Peng Li, Kang Wang and Mengjia Jin

The purpose of this paper is to investigate a new cause of torque ripple in interior permanent magnet (IPM) alternating current (AC) motors, which is common but has hardly been…

Abstract

Purpose

The purpose of this paper is to investigate a new cause of torque ripple in interior permanent magnet (IPM) alternating current (AC) motors, which is common but has hardly been studied. The paper also proposes a new method to suppress the total torque ripple.

Design/methodology/approach

Besides the well-known cogging torque and mutual torque ripple, a new ripple which exists in the reluctance torque is found. It is verified with both analytical model and finite element analysis. Also, a novel method is proposed to reduce the reluctance torque ripple, with experimental validation.

Findings

It is usually said that the winding inductances of an IPM AC motor vary sinusoidally with the rotor position, thus, the d-axis and q-axis inductances are constant, whilst the reluctance torque is smooth. However, in most practical motors, the inductances vary irregularly, causing a significant ripple in the reluctance torque. Moreover, in machine design, it is always desirable to suppress the cogging torque as much as possible. However, in this paper, it is proved that the cogging torque can remain and be used to cancel the reluctance torque ripple.

Originality/value

Torque ripple in the IPM AC motors is usually reduced by suppressing the cogging torque and making both back electromotive forces and currents sinusoidal. However, this paper reveals the new cause of the torque ripple due to the irregular variation of winding inductances. Moreover, the paper gives a new method to cancel the reluctance torque ripple with the cogging torque.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 1998

Z. Zycki and K. Pawluk

The current pulse magnetizing process of permanent magnets is considered. General conditions for the design of a pulse magnetizer are given for the case when the magnetizing…

612

Abstract

The current pulse magnetizing process of permanent magnets is considered. General conditions for the design of a pulse magnetizer are given for the case when the magnetizing process is effected on the magnet put in free space. The boundary‐integral analysis of the magnetic field inside the magnet is presented. It concerns both the state corresponding to the maximum value of the magnetizing current pulse and the magnetized state after the full magnetizing.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 17 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 November 2021

Ali Muhammad, Faisal Khan, Muhammad Yousuf and Basharat Ullah

The purpose of this paper is to modernize the generator system of wind turbine concept that not only improves the efficiency and power density but also reduces the system cost…

Abstract

Purpose

The purpose of this paper is to modernize the generator system of wind turbine concept that not only improves the efficiency and power density but also reduces the system cost making design simpler and less expensive, especially in large-scale production.

Design/methodology/approach

This paper presents a new permanent magnet transverse flux generator (PMTFG) for wind energy production. The key feature of its composition is the double armature coil in a semi-closed stator core. The main structural difference of the presented design is the use of double coil in the same space of semi-closed stator core and reduced number of stator pole pairs and rotor magnets from 12/24 to 10/20. 3D simulations are performed using finite element analysis (FEA) to measure induced voltage and magnetic field distribution at no load. The FEA is performed to quantify the change in flux linkage, induced voltage and output power as a function of different speeds and load current.

Findings

Results show that PMTFG with double coil configuration has improved electromagnetic performance in terms of flux linkage, induced voltage, output power and efficiency. The power density of 10/20 PMTFG with the double coil is 0.0524 KW/Kg, about an 18% increase compared to the conventional design.

Research limitations/implications

The proposed PMTFG is highly recommended for direct drive applications such as wind power.

Originality/value

Four models are simulated by FEA with single and double coil configuration, and load analysis is performed on all simulated models. Finally, results are compared with conventional PMTFG.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 April 2022

Ali Jamali Fard and Mojtaba Mirsalim

During the design process of synchronous reluctance motors (SynRMs), one crucial step, after its main dimensioning, is optimizing the rotor geometry for maximum average torque and…

107

Abstract

Purpose

During the design process of synchronous reluctance motors (SynRMs), one crucial step, after its main dimensioning, is optimizing the rotor geometry for maximum average torque and minimum torque ripple. However, because of the complexity of rotor flux-barrier layers geometry, the number of rotor geometrical parameters is high and this step could be quite complex and time-consuming. To obtain a good performance, one needs a robust algorithm to optimize the rotor geometry. The purpose of this paper is to present a sequential iterative method for rotor shape optimization in SynRMs based on the per-unit rotor model to maximize the average torque and minimize the torque ripple.

Design/methodology/approach

In the presented method, at first, rotor geometrical parameters are classified into several groups based on their geometrical similarities, and then optimization is done on these individual groups iteratively. The method starts with an arbitrary feasible rotor geometry and proceeds to optimize it. Because the method’s performance depends on initial rotor geometry, different cases are studied to investigate the convergence and robustness of the method. The MATLAB software is used to implement the optimization algorithm, and the ANSYS Maxwell software is used for the finite element analysis.

Findings

The performance of the proposed method is studied on a three-phase 0.75 kW-1,500 rpm permanent magnet assisted SynRM. The results show that the method improves the average torque while reducing the torque ripple. Even if the method starts with an inappropriate initial rotor geometry, it is robust enough and converges within an acceptable number of iterations.

Originality/value

The value of this paper is in introducing a per-unit rotor model. When the authors optimize the rotor geometry for a specific motor rating, it can be scaled up or down for other ratings with little effort. In this work, the number of rotor poles is four and the number of rotor flux-barrier layers per pole is three. Other combinations could be analyzed in future studies.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 November 2016

Xiping Liu, Ya Li, Zhangqi Liu, Tao Ling and Zhenhua Luo

The purpose of this paper is to propose a permanent magnet-assisted synchronous reluctance machine (PMASynRM) using ferrite magnets with the same power density as rare-earth PM…

Abstract

Purpose

The purpose of this paper is to propose a permanent magnet-assisted synchronous reluctance machine (PMASynRM) using ferrite magnets with the same power density as rare-earth PM synchronous motors used in Toyota Prius 2010.

Design/methodology/approach

A novel rotor structure with rectangular PMs is discussed with respect to the demagnetization of ferrite magnets and mechanical strength. Some electromagnetic characteristics including torque, output power, loss and efficiency are calculated by 2D finite element analysis.

Findings

The results of the analysis show that a high power density and high efficiency for PMASynRM can be achieved using ferrite magnets.

Originality/value

This paper proposes a novel rotor structure of PMASynRM with low-cost ferrite magnets that achieves high power density as permanent machines with rare-earth PMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 September 2004

Yukihiro Okada, Yoshihiro Kawase and Shinya Sano

Describes the method of optimization based on the finite element method. The quality engineering and the multivariable analysis are used as the optimization technique. In…

Abstract

Describes the method of optimization based on the finite element method. The quality engineering and the multivariable analysis are used as the optimization technique. In addition, this method is applied to a design of IPM motor to reduce the torque ripple.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 23 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 July 2020

Farshid Mahmouditabar, Abolfazl Vahedi, Pourya Ojaghlu and Noureddine Takorabet

This paper aims to present a modified MEC algorithm for demagnetization modeling of the PM motor. One of the major issues that the designers of the permanent magnet (PM) motors…

Abstract

Purpose

This paper aims to present a modified MEC algorithm for demagnetization modeling of the PM motor. One of the major issues that the designers of the permanent magnet (PM) motors are faced with is the demagnetization of magnets because of high temperatures and armature reaction. Demagnetization will weaken the magnetic properties of the magnet and lead to a reduction in the performance of the motor. Therefore, it is essential to provide appropriate methods for modeling this phenomenon. One of these methods that has a compromise between accuracy and time consumption is the magnetic equivalent circuit (MEC). In this paper, the MEC method is used for modeling the demagnetization phenomenon for the newly introduced ring winding axial flux PM (RWAFPM) motor. The proposed algorithm can take the demagnetization into account through a time-stepping model and also correct the value of the knee point flux density.

Design/methodology/approach

The modified MEC method is used for demagnetization modeling. The modified algorithm can take into account demagnetization and also renew the knee point at each step to increase the accuracy of the modeling. In addition, the proposed algorithm has a very high and fast execution speed so that the computation time of the MEC algorithm compared to the FEM model is reduced from 3 h to 35 s. In this case, the simulations have been performed on a core i5@ 2.3 GHz/8GB computer. The FEM model is used to verify the validity of the MEC results.

Findings

The obtained results show that at the high temperature, RWAFPM motor is severely vulnerable to demagnetization. At the temperature of 140°C, the demagnetization rate of 35% has occurred. So, it is necessary to use the high-temperature magnet in this motor or modify the motor structure in terms of demagnetization tolerant capability.

Originality/value

The RWAFPM motor is introduced for use in ship propulsion and traction systems. For this reason, an accurate estimation of demagnetization tolerant of this motor in different working conditions can show the strengths and weaknesses of this structure.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 173