Search results

1 – 10 of 67
Article
Publication date: 20 September 2018

Nobuyuki Naoe and Akio Imazawa

This paper aims to present a Halbach magnet array linear machine, without an iron core and the electromotive force (EMF) characteristic results.

Abstract

Purpose

This paper aims to present a Halbach magnet array linear machine, without an iron core and the electromotive force (EMF) characteristic results.

Design/methodology/approach

The linear machine was made with mover coils and a permanent magnet stator without an iron core. For an outline design, the analyzed magnetic density results were compared to the Halbach array with a horizontal array using the 3D finite element analysis. The test was carried out on an experimental system using a prototype linear machine. The EMF of the linear machine, with applied Halbach array magnetic circuit, is verified with the experiment.

Findings

The EMF peak value of the Halbach array is larger than the EMF of the horizontal array. Compared to the EMF in the experimental results, the effective value of the Halbach array is 1.69 times greater at an average operation speed of 373 mm/s.

Originality/value

The core-less linear machine has advantages of reduced cogging torque and iron loss because both the stator and the mover do not have an iron core. The stator and rotor will not rust from water. In this paper, it is clear from the basic electrical characteristics that the linear machine, with applied Halbach array, is larger than the EMF of the horizontal array.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 November 2016

Lidija Petkovska, Goga Vladimir Cvetkovski and Paul Lefley

In the present paper the influence of the magnetization patterns of rotor magnets on the performance characteristics of a surface permanent magnet (SPM) motor has been…

Abstract

Purpose

In the present paper the influence of the magnetization patterns of rotor magnets on the performance characteristics of a surface permanent magnet (SPM) motor has been investigated. The purpose of this paper is to show how the electromagnetic and electromechanical characteristics of this type of motor can be significantly changed by applying various magnetization patterns of permanent magnets (PM) on the rotor surface.

Design/methodology/approach

First, a survey of possible and most frequently used magnetization patterns for PM motors is presented. The research is focussed on the comparison of performance characteristics and is developed at three levels. The study starts with investigation of a conventional SPM motor having segmented PM, and two magnetization patterns are considered: parallel and radial. As there was no significant difference in motor performance at parallel and radial magnetization, for further investigation only radial magnetization, being more conventional, was considered. In the second step, the counterparts of SPM with two Halbach array configurations, under the constraint of fixed magnet volume, are studied. Finally, detailed comparative analyses of SPM at radial, Halbach 1, and Halbach 2 magnetic patterns are presented. The advantages and drawbacks of the suggested magnetic configurations are then discussed.

Findings

The authors have shown how the magnetization pattern of rotor PM can have a substantial impact on the SPM motor performance characteristics. From the analysis of magnetic field properties at various types of magnetization, it is observed that both the shape and the rates of the characteristics, for radial magnetization and Halbach 2 configuration, exhibit similar features. This is because the Halbach 2 array cancels the magnetic flux above the PM – that is, it strengthens the magnetic field in the rotor, and enhances the coupling between the rotor and stator magnetic field. It is worth emphasizing that, because of less saturation of the magnetic core and lower iron loss at Halbach 1 and Halbach 2 magnetization, it is possible to increase the armature current and consequently increase the electromagnetic torque. This finding could be an interesting for further research.

Originality/value

The paper presents an original comparative analysis of the performance characteristics of a surface permanent motor at various magnetization patterns. The novelty of the paper is seen in the introduction of two Halbach magnetization arrays for PM and improvement of the performance characteristics of the analysed motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

M. Zheng, Z.Z. Wu and Z.Q. Zhu

In this paper, the partitioned stator flux reversal permanent magnet (PM) (PS-FRPM) machines with Halbach array PMs are investigated to compare with the machine having the…

Abstract

Purpose

In this paper, the partitioned stator flux reversal permanent magnet (PM) (PS-FRPM) machines with Halbach array PMs are investigated to compare with the machine having the conventional parallel magnetized PMs, and conventional FRPM machine. This paper aims to discuss these issues.

Design/methodology/approach

The Halbach array PM machines with 2-, 3-, and 4-segment and ideal Halbach array PMs have similar topology and designed based on the PS-FRPM with parallel magnetized PMs. The open circuit analysis and electromagnetic performance has been calculated and compares with the aid of finite element (FE) method, and validated by experiments.

Findings

The PS-FRPMs with Halbach array PMs have higher back-EMF and torque performance, as well as lower cogging torque and torque ripple, all having significantly higher torque density than the FRPM machine with single stator. The experimental results and FE predicted results of the 2-segment Halbach PM prototype machine are compared and good agreement is achieved.

Originality/value

This paper introduces the new concept and design of PS-FRPMs having Halbach array PMs with different PM segments and idea PM array. The comparison with conventional FRPM and PS-FRPM with parallel magnetized PMs shows the benefits with PS-FRPMs with Halbach array PMs.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 2021

Heshan Zhang, YanPeng Wang, Jiying Tuo, Minglei Yang, Ying Ma and Jin Xu

This study aims to accurately calculate the magnetic field distribution, which is a prerequisite for pre-design and optimization of electromagnetic performance. Accurate…

Abstract

Purpose

This study aims to accurately calculate the magnetic field distribution, which is a prerequisite for pre-design and optimization of electromagnetic performance. Accurate calculation of magnetic field distribution is a prerequisite for pre-design and optimization.

Design/methodology/approach

This paper proposes an analytical model of permanent magnet machines with segmented Halbach array (SHA-PMMs) to predict the magnetic field distribution and electromagnetic performance. The field problem is divided into four subdomains, i.e. permanent magnet, air-gap, stator slot and slot opening. The Poisson’s equation or Laplace’s equation of magnetic vector potential for each subdomain is solved. The field’s solution is obtained by applying the boundary conditions. The electromagnetic performances, such as magnetic flux density, unbalanced magnetic force, cogging torque and electromagnetic torque, are analytically predicted. Then, the influence of design parameters on the torque is explored by using the analytical model.

Findings

The finite element analysis and prototype experiments verify the analytical model’s accuracy. Adjusting the design parameters, e.g. segments per pole and air-gap length, can effectively increase the electromagnetic torque and simultaneously reduce the torque ripple.

Originality/value

The main contribution of this paper is to develop an accurate magnetic field analytical model of the SHA-PMMs. It can precisely describe complex topology, e.g. arbitrary segmented Halbach array and semi-closed slots, etc., and can quickly predict the magnetic field distribution and electromagnetic performance simultaneously.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 December 2020

Shengtong Wang, Ouyang Wu, Zhe Li and Bin Wang

Proposing a new type of water-lubricated thrust bearing meets the load-bearing requirements of high-power shaft-less rim driven thrusters.

Abstract

Purpose

Proposing a new type of water-lubricated thrust bearing meets the load-bearing requirements of high-power shaft-less rim driven thrusters.

Design/methodology/approach

The designs were tested by establishing a bearing thermal-fluid-magnetic comprehensive simulation model and developing bearing fluid film force and magnetic simulation. Lubrication performance tests were carried out on the bearing test rig.

Findings

The Halbach array of magnet blocks is able to reach the maximum magnetic force. The material of sheath can help increase the magnetism. The magnetism is able to reduce wear during low-speed and the start-stop phase, while the eddy current loss at high speeds will lead to a decrease in magnetic force. The experiment found that the bearing was more stable at low speeds and would not demagnetize due to the temperature rise, but it is necessary to pay attention to the running stability at high speeds to prevent rubbing and impact.

Originality/value

An innovative combination of hydrodynamic pressure and permanent magnetic repulsion was observed to form a magnetic-liquid double suspension bearing with large bearing capacity.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2020-0295

Details

Industrial Lubrication and Tribology, vol. 73 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 July 2010

J.L.G. Janssen, J.J.H. Paulides and E.A. Lomonova

The purpose of this paper is to present novel analytical expressions which describe the 3D magnetic field of arbitrarily magnetized triangular‐shaped charged surfaces. These…

Abstract

Purpose

The purpose of this paper is to present novel analytical expressions which describe the 3D magnetic field of arbitrarily magnetized triangular‐shaped charged surfaces. These versatile expressions model that the field of triangular‐shaped permanent magnets (PMs) are very suitable to model skewed slotless machines.

Design/methodology/approach

The analytical 3D surface charge method is normally used to provide field expressions for PMs in free space. In this paper, the analytical surface charge integrals are analytically solved for charged right‐triangular surfaces. The resulting field is compared with that obtained by finite element modeling (FEM) and subsequently applied in two examples.

Findings

The comparison with FEM shows that the 3D analytical expressions are very accurate and exhibit very low‐numerical noise. These fast‐solving versatile expressions are therefore considered suitable to model triangular‐shaped or polyhedral‐shaped PMs.

Research limitations/implications

The surface charge method assumes that the relative permeability is equal to 1 and therefore soft‐magnetic materials need to be modeled using the method of images. The PMs are assumed to be ideal in terms of homogeneity, magnetization vector, permeability, demagnetization, and geometrical tolerances.

Practical implications

Many applications, such as the subclass of slotless synchronous linear actuators with a skewed PM structure and planar magnetic bearings, are very suitable to incorporate this modeling technique, since it enables the analysis of a variety of performance data.

Originality/value

As an addition to the common 3D analytical field expressions for cuboidal or cylindrical PMs, this paper presents novel expressions for magnets having triangular surfaces.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 November 2012

Siavash Sadeghi and Leila Parsa

The purpose of this paper is to minimize the torque pulsation in Halbach array permanent magnet synchronous machines (PMSMs).

Abstract

Purpose

The purpose of this paper is to minimize the torque pulsation in Halbach array permanent magnet synchronous machines (PMSMs).

Design/methodology/approach

Because of its specific structure, the cogging torque influences the main part of the torque pulsation in a Halbach array PMSM. In this paper, first it is shown that the conventional magnet skewing method does not have a significant effect on the torque pulsation in this motor, and then an improved skewing method with fewer skewing steps is proposed. In this method permanent magnet segments are placed sinusoidally, with two‐step skewing along the rotor. Generalization with different combinations of slots and poles is considered for a Halbach array PMSM.

Findings

Using a detailed finite element method (FEM) it was found that with the proposed technique the cogging torque factor is reduced to as low as 8 percent, while the average value of the torque is maintained near the machine nominal average torque.

Practical implications

Halbach array PMSMs are very good candidates for high dynamic performance applications such as aerospace applications due to their high acceleration and deceleration features. This technique also resolves the mechanical vibration and acoustic noise issues, which are caused by torque pulsation and significantly affect machine performance.

Originality/value

The originality of this paper lies in the FEM results. Since Halbach array PMSMs have a special structure it was shown that the conventional skewing method does not work well for this machine. The new proposed technique has a significant effect on the torque pulsation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 August 2021

Cheng Luo, Kunlun Zhang, Da Liang and Yongzhi Jing

The purpose of the paper is to study the stability control of permanent magnet (PM) and electromagnetic hybrid Halbach array electrodynamic suspension (EDS) system because of the…

Abstract

Purpose

The purpose of the paper is to study the stability control of permanent magnet (PM) and electromagnetic hybrid Halbach array electrodynamic suspension (EDS) system because of the poor suspension stability caused by the well-known under-damped nature of PM EDS system. The adjustment control is realized by PM and electromagnetic hybrid Halbach array, which is composed by winding active normal conductor coils on PM surface.

Design/methodology/approach

The three-dimensional (3-D) electromagnetic force analytical expression of PM and electromagnetic hybrid Halbach array EDS system for a nonmagnetic conductive plate is derived. And the accuracy of the derived equations is verified by a 3-D finite-element model (FEM). Basing on the 3-D levitation force expression, an acceleration feedback suspension controller is designed to suppress the vibration of PM EDS system, and the suspension stability of the system under the track and load disturbance was simulated and analyzed.

Findings

The 3-D electromagnetic force comparison of analytical model and FEM are in good agreement, which verifies the correctness of the analytical expression. The simulation results show that the acceleration feedback suspension controller can make the system have good suspension stability under the external disturbance. So it proved that the PM and electromagnetic hybrid Halbach array EDS system can overcome the poor suspension stability caused by the under-damped nature of PM EDS system through the designed acceleration feedback suspension controller.

Originality/value

This paper designed an acceleration feedback suspension controller to suppress the vibration of PM and electromagnetic hybrid Halbach array EDS system under external disturbance, basing on the derived levitation force analytical expression. And the simulation results show that the acceleration feedback suspension controller can make the system have good suspension stability under the external disturbance.

Article
Publication date: 5 September 2016

Murat Caner, Chris Gerada, Greg Asher and Tolga Özer

The purpose of this paper is to investigate Halbach array effects in surface mounted permanent magnet machine (SMPM) in terms of both self-sensing and torque capabilities. A…

Abstract

Purpose

The purpose of this paper is to investigate Halbach array effects in surface mounted permanent magnet machine (SMPM) in terms of both self-sensing and torque capabilities. A comparison between a conventional SMPM, which has radially magnetized rotor, and a Halbach machine has been carried out.

Design/methodology/approach

The geometric parameters of the two machines have been optimized using genetic algorithm (GA) with looking Pareto. The performance of the machines’ geometry has been calculated by finite element analysis (FEA) software, and two parametric machine models have been realized in Matlab coupled with the FEA and GA toolboxes. Outer volume of the machine, thus copper loss per volume has been kept constant. The Pareto front approach, which simultaneously considers looks two aims, has been used to provide the trade-off between the torque and sensorless performances.

Findings

The two machines’ results have been compared separately for each loading condition. According to the results, the superiority of the Halbach machine has been shown in terms of sensorless capability compromising torque performance. Additionally, this paper shows that the self-sensing properties of a SMPM machine should be considered at the design stage of the machine.

Originality/value

A Halbach machine design optimization has been presented using Pareto optimal set which provides a trade-off comparison between two aims without using weightings. These are sensorless performance and torque capability. There is no such a work about sensorless capability of the Halbach type SMPM in the literature.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 25 February 2014

Liang Yan, Lei Zhang, Zongxia Jiao, Hongjie Hu, Chin-Yin Chen and I-Ming Chen

Force output is extremely important for electromagnetic linear machines. The purpose of this study is to explore new permanent magnet (PM) array and winding patterns to increase…

Abstract

Purpose

Force output is extremely important for electromagnetic linear machines. The purpose of this study is to explore new permanent magnet (PM) array and winding patterns to increase the magnetic flux density and thus to improve the force output of electromagnetic tubular linear machines.

Design/methodology/approach

Based on investigations on various PM patterns, a novel dual Halbach PM array is proposed in this paper to increase the radial component of flux density in three-dimensional machine space, which in turn can increase the force output of tubular linear machine significantly. The force outputs and force ripples for different winding patterns are formulated and analyzed, to select optimized structure parameters.

Findings

The proposed dual Halbach array can increase the radial component of flux density and force output of tubular linear machines effectively. It also helps to decrease the axial component of flux density and thus to reduce the deformation and vibration of machines. By using analytical force models, the influence of winding patterns and structure parameters on the machine force output and force ripples can be analyzed. As a result, one set of optimized structure parameters are selected for the design of electromagnetic tubular linear machines.

Originality/value

The proposed dual Halbach array and winding patterns are effective ways to improve the linear machine performance. It can also be implemented into rotary machines. The analyzing and design methods could be extended into the development of other electromagnetic machines.

Details

Engineering Computations, vol. 31 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 67