Search results

1 – 10 of 469
Article
Publication date: 5 July 2021

Saravanan Sivasamy, M. Marsaline Beno Maria and Prabhu Sundaramoorthy

The automotive industry extensively uses switched reluctance motors (SRM) because of their excellent performance. The main purpose of this article is to investigate the design of…

Abstract

Purpose

The automotive industry extensively uses switched reluctance motors (SRM) because of their excellent performance. The main purpose of this article is to investigate the design of a particular type of SRM called doubly salient outer rotor switched reluctance motor (DSORSRM) for electric vehicle application in this paper.

Design/methodology/approach

Different configurations of DSORSRM motor such as long flux path SRM, reduced flux path mutually coupled SRM and short flux path SRM (SF-SRM) are considered for investigation. The best configuration based on average torque is selected for further investigation by conducting an electromagnetic analysis. Also, in the proposed design, laminating material with low iron loss and superior performance characteristics is selected by doing electromagnetic analysis for SRM with M19, M660-50D, M-19 and M800-100A non-oriented laminating core material. Because vibrations are produced in DSORSRM devices as a result of changing induction, a mechanical analysis was performed to estimate the natural frequencies of vibration and the amplitudes that may lead to acoustic noises.

Findings

SF-SRM configuration with three-phase, 12/10, 250 W, 48 V, 1,000 rpm is selected with the impact in the elimination of flux reversals and also has various salient features such as singly excited, no rotor windings, no permanent magnet, pure in construction and high starting torque. Still, this SRM suffers from vibration owing to changing induction. In lamination material selection, M19 is chosen as optimized material to obtain vibration reduction. Vibration analysis was performed for the optimized 12/10 SF-SRM with M19 lamination material, and the corresponding modes for the machine to operate with reduced vibration are analyzed. The current and speed characteristics of the prototype model for the DSORSRM motor are obtained and validated with finite element analysis (FEA) results.

Originality/value

The performed FEA result shows that the proposed DSORSRM with short flux path configuration produces a high average torque of 1.915 N m. The M19 lamination material gives a minimum iron loss of 9.056 W. The modal frequencies are estimated and validated with numerical equations.

Article
Publication date: 1 October 1931

As in the S.6's of 1929, the plugs fitted to the engines of this year's Schneider Trophy seaplanes were supplied by Lodge Plugs, Limited, of Rugby. Early readers of AIRCRAFT…

Abstract

As in the S.6's of 1929, the plugs fitted to the engines of this year's Schneider Trophy seaplanes were supplied by Lodge Plugs, Limited, of Rugby. Early readers of AIRCRAFT ENGINEERING will remember that a special description by Mr. Alec M. Lodge of the evolution of plugs capable of standing up to the work required of them in engines of high output was published in Vol. I, October, 1929, at page 274. The plug used this year was the Lodge X. 170 made in the firm's model factory at Rugby, the only factory in Europe devoted exclusively to the manufacture of sparking plugs. The exclusive patents and processes used in the making of the special Schneider Trophy plugs, are incorporated in the standard patterns for aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 3 no. 10
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 27 April 2020

Prabhu Sundaramoorthy, Balaji M., Suresh K., Ezhilventhan Natesan and Mohan K.

The main purpose of this research is to investigate finite-element analysis (FEA) on flux reversal-free stator switched reluctance motor (FRFSSRM) for industrial applications. The…

Abstract

Purpose

The main purpose of this research is to investigate finite-element analysis (FEA) on flux reversal-free stator switched reluctance motor (FRFSSRM) for industrial applications. The vibration analysis for an electrical machine is essential because of the acoustic noises. The acoustic noises originate by coincidence of natural frequencies of motor with the vibration frequencies.

Design/methodology/approach

The identification with the performance for FRFSRM by torque ripple, vibration. The vibration of the machine is because of unbalanced electromagnetic forces. The mutual coupled winding and a common pole between two adjacent exciting poles reduce these unbalanced forces.

Findings

The accelerometer is used to monitor the vibration amplitude in transient mode. A comparison study shows that the vibration is less in the E-core SRM than in the conventional flux reversal SRM.

Originality/value

The shorter flux path reduces the torque ripple and vibration content in SRM. This research article mainly focuses on the parameters such as vibration and torque ripple. The vibration of FRFSRM is identified by accelerometer; ANSYS Package predicts the simulation of the vibration measurement. The dynamic behaviors of this E-core SRM model with rated conditions the vibration had predicted.

Details

Circuit World, vol. 46 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 June 2002

P. Vas, M. Rashed, A.K.M. Joukhadar and C.H. Ng

The present paper will discuss newly developed fully digital sensorless induction motor and permanent magnet motor synchronous motor drives, which employ natural field orientation…

Abstract

The present paper will discuss newly developed fully digital sensorless induction motor and permanent magnet motor synchronous motor drives, which employ natural field orientation (NFO). So far only vector‐type of NFO induction motor drives have been discussed in the literature, and very limited experimental results have been shown. In addition, the paper will also discuss new sensorless DTC‐type of NFO induction motor drives (NFO‐DTC drives). Using fully digital implementations of the new NFO‐type induction motor and permanent magnet drives, experimental results will be shown for various operating conditions, including slow and fast reversals at very low speed. Robustness to parameter deviations will also be demonstrated. The developed new types of NFO drives can also work at zero stator frequency and sustained zero frequency operation will also be demonstrated. The drives have been tested in basically two environments: where the load is a dc motor; and where a crane drive is implemented. In contrast to other sensorless crane drives, which develop stability problems, it was found that the new NFO drives can operate in a stable manner under all operating conditions including zero frequency. This allows for many new applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 21 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

M. Zheng, Z.Z. Wu and Z.Q. Zhu

In this paper, the partitioned stator flux reversal permanent magnet (PM) (PS-FRPM) machines with Halbach array PMs are investigated to compare with the machine having the…

Abstract

Purpose

In this paper, the partitioned stator flux reversal permanent magnet (PM) (PS-FRPM) machines with Halbach array PMs are investigated to compare with the machine having the conventional parallel magnetized PMs, and conventional FRPM machine. This paper aims to discuss these issues.

Design/methodology/approach

The Halbach array PM machines with 2-, 3-, and 4-segment and ideal Halbach array PMs have similar topology and designed based on the PS-FRPM with parallel magnetized PMs. The open circuit analysis and electromagnetic performance has been calculated and compares with the aid of finite element (FE) method, and validated by experiments.

Findings

The PS-FRPMs with Halbach array PMs have higher back-EMF and torque performance, as well as lower cogging torque and torque ripple, all having significantly higher torque density than the FRPM machine with single stator. The experimental results and FE predicted results of the 2-segment Halbach PM prototype machine are compared and good agreement is achieved.

Originality/value

This paper introduces the new concept and design of PS-FRPMs having Halbach array PMs with different PM segments and idea PM array. The comparison with conventional FRPM and PS-FRPM with parallel magnetized PMs shows the benefits with PS-FRPMs with Halbach array PMs.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 July 2024

Basharat Ullah and Faisal Khan

This paper aims to present an overview of permanent magnet linear flux-switching machines (PMLFSM), field excited LFSM and hybrid excited LFSM (HELFSM) topologies as presented in…

Abstract

Purpose

This paper aims to present an overview of permanent magnet linear flux-switching machines (PMLFSM), field excited LFSM and hybrid excited LFSM (HELFSM) topologies as presented in literature for transportation systems such as high-speed trains and maglev systems.

Design/methodology/approach

The structural designs of different configurations are thoroughly investigated, and their respective advantages and disadvantages are examined. Based on the geometry and excitation sources, a detailed survey is carried out. Specific design and space issues, such as solid and modular structures, structure strength, excitation sources placement, utilization of PM materials, and flux leakage are investigated.

Findings

PMLFSM provide higher power density and efficiency than induction and DC machines because of the superior excitation capability of PMs. The cost of rare-earth PMs has risen sharply in the past few decades because of their frequent use, so the manufacturing cost of PMLFSM is increasing. Owing to the influence of high-energy PMs and magnetic flux concentration, the efficiency and power density are higher in such machines. PM is the only excitation source in PMLFSM and has constant remanence, limiting its applications in a wide speed operation range. Therefore, the field winding is added in the PMLFSM to flexibly regulate the magnetic field, making it a hybrid excited one. The HELFSM possess better flux linkage, high thrust force density and better flux controlling ability, leading to a wide speed range. However, the HELFSM have problems with the crowded mover, as PM, field excited and armature excitation are housed on a short mover. So, for better performance, the area of each excitation component has to compete with each other.

Originality/value

Transportation of goods and people by vehicles is becoming increasingly prevalent. As railways play a significant role in the transportation system and are an integral part of intercity transportation. So, this paper presents an overview of various linear machines that are presented in literature for rail transit systems to promote sustainable urban planning practices.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 March 2016

Chukwuemeka Chijioke Awah, Z.Q. Zhu, Zhongze Wu, Di Wu and Xiao Ge

– The purpose of this paper is to propose a novel type of switched flux PM machines with two separate stators.

Abstract

Purpose

The purpose of this paper is to propose a novel type of switched flux PM machines with two separate stators.

Design/methodology/approach

2D-FEA is employed to analyze the electromagnetic performance of the proposed machines. Moreover, the results are validated by experiments.

Findings

The proposed machine has higher torque density, less unbalanced magnetic force on the modulating steel piece and uses less PM volume.

Originality/value

The proposed machine is a low-cost novel topology with different rotor pole combinations.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 February 2021

Zohreh Delirani, Akbar Rahideh and Mohammad Mardaneh

This paper aims to present an analytical electromagnetic model for wound rotor synchronous machines with a salient-pole rotor structure based on the two-dimensional subdomain…

Abstract

Purpose

This paper aims to present an analytical electromagnetic model for wound rotor synchronous machines with a salient-pole rotor structure based on the two-dimensional subdomain technique.

Design/methodology/approach

The machine is divided into five active sub-regions: stator slots, stator slot openings, air gap, rotor slots and rotor slot openings. For each sub-region, the governing partial differential equations are derived and solved analytically.

Findings

The magnetic flux density distributions in all active sub-regions are analytically computed and other quantities such as back-emf, inductances, electromagnetic torque and unbalanced magnetic forces are also analytically calculated. The results of the analytical model are compared to those obtained from the finite element analysis to show the accuracy of the proposed model.

Originality/value

The two-dimensional analytical model of a wound rotor salient-pole synchronous machine using the sub-domain technique is the main contribution of the research.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2015

Y. Tang, J.J.H. Paulides and E.A. Lomonova

– The purpose of this paper is to investigate winding topologies for flux-switching motors (FSMs) with various segment-tooth combinations and different excitation methods.

Abstract

Purpose

The purpose of this paper is to investigate winding topologies for flux-switching motors (FSMs) with various segment-tooth combinations and different excitation methods.

Design/methodology/approach

For the ac winding of FSM, two winding topologies, namely the concentrated winding and the distributed winding, are compared in terms of the winding factor and efficiency. For the field winding of dc-excited FSM (DCEFSM), another two winding topologies, namely the lap winding and the toroidal winding, are compared in terms of effective coil area, end-winding length, and thermal conditions. Analytical derivation is used for the general winding factor calculation. The calculation results are validated using finite element analysis.

Findings

Winding factors can be used as an indication of winding efficiency for FSMs in the same manner as done for synchronous motors. For FSMs with concentrated windings, the winding factor increases when the rotor tooth number approaches a multiple of the stator segment number. For FSMs with certain segment-tooth combinations, e.g. 6/8, the theoretical maximum winding factor can be achieved by implementing distributed windings. Furthermore, the toroidal winding can be an efficient winding topology for DCEFSMs with large stator diameter and small stack length.

Research limitations/implications

This work can be continued with investigating the variation of reluctance torque with respect to different segment-tooth combinations of FSM.

Originality/value

This paper proposes a general method to calculate the winding factor of FSMs using only the phase number, the stator segment number, the rotor tooth number, and the skew angle. Using this method, a table of winding factors of FSMs with different segment-tooth combinations is provided. Principle of design of FSMs with high-winding factors are hence concluded. This paper also proposed the implementation of distributed windings for FSM with certain segment-tooth combinations, e.g. 6/8, by which means a theoretical maximum winding factor is achieved. In addition, different winding topologies for the field winding of DCEFSM are also investigated.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2017

Hongbo Qiu, Wenfei Yu, Shuai Yuan, Bingxia Tang and Cunxiang Yang

The impact of the loop current (LC) on the motor magnetic field in the analysis of the inter-turn short circuit (ITSC) fault is always ignored. This paper made a comparative study…

Abstract

Purpose

The impact of the loop current (LC) on the motor magnetic field in the analysis of the inter-turn short circuit (ITSC) fault is always ignored. This paper made a comparative study on the electromagnetic field of permanent magnet synchronous motors (PMSM). The purpose of this study is to explore the necessary of the LC existing in the fault analysis and the electromagnetic characteristics of the PMSM with the ITSC fault when taking into account the LC.

Design/methodology/approach

Based on the finite element method (FEM), the fault model was established, and the magnetic density of the fault condition was analyzed. The induced electromotive force (EMF) and the LC of the short circuit ring were studied. The three-phase induced EMF and the unbalance of the three-phase current under the fault condition were studied. Finally, a prototype test platform was built to obtain the data of the fault.

Findings

The influence of the fault on the magnetic density was obtained. The current phase lag when the ITSC fault occurs causes the magnetic enhancement of the armature reaction. The mechanism that LC hinders the flux change was revealed. The influence of the fault on the three-phase-induced EMF symmetry, the three-phase current balance and the loss was obtained.

Originality/value

The value of the LC in the short circuit ring and the influence of it on the motor electromagnetic field were obtained. On the basis of the electromagnetic field calculation model, the sensitivity of the LC to the magnetic density, induced EMF, current and loss were analyzed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 469