Search results

1 – 10 of over 3000
Article
Publication date: 1 September 2022

Xuwen Chi, Cao Tan, Bo Li, Jiayu Lu, Chaofan Gu and Changzhong Fu

The purpose of this paper is to solve the common problems that traditional optimization methods cannot fully improve the performance of electromagnetic linear actuators (EMLAs).

Abstract

Purpose

The purpose of this paper is to solve the common problems that traditional optimization methods cannot fully improve the performance of electromagnetic linear actuators (EMLAs).

Design/methodology/approach

In this paper, a multidisciplinary optimization (MDO) method based on the non-dominated sorting genetic algorithm-II (NSGA-II) algorithm was proposed. An electromagnetic-mechanical coupled actuator analysis model of EMLAs was established, and the coupling relationship between static/dynamic performance of the actuator was analyzed. Suitable optimization variables were designed based on fuzzy grayscale theory to address the incompleteness of the actuator data and the uncertainty of the coupling relationship. A multiobjective genetic algorithm was used to obtain the optimal solution set of Pareto with the maximum electromagnetic force, electromagnetic force fluctuation rate, time constant and efficiency as the optimization objectives, the final optimization results were then obtained through a multicriteria decision-making method.

Findings

The experimental results show that the maximum electromagnetic force, electromagnetic force fluctuation rate, time constants and efficiency are improved by 18.1%, 38.5%, 8.5% and 12%, respectively. Compared with single-discipline optimization, the effectiveness of the multidiscipline optimization method was verified.

Originality/value

This paper proposes a MDO method for EMLAs that takes into account static/dynamic performance, the proposed method is also applicable to the design and analysis of various electromagnetic actuators.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 April 2024

Guanglu Yang, Si Chen, Jianwei Qiao, Yubao Liu, Fuwen Tian and Cunxiang Yang

The purpose of this paper is to present the influence of inter-turn short circuit faults (ITSF) on electromagnetic vibration in high-voltage line-starting permanent magnet…

Abstract

Purpose

The purpose of this paper is to present the influence of inter-turn short circuit faults (ITSF) on electromagnetic vibration in high-voltage line-starting permanent magnet synchronous motor (HVLSPMSMS).

Design/methodology/approach

In this paper, the ampere–conductor wave model of HVLSPMSM after ITSF is established. Second, a mathematical model of the magnetic field after ITSF is established, and the influence law of the ITSF on the air-gap magnetic field is analyzed. Further, the mathematical expression of the electromagnetic force density is established based on the Maxwell tensor method. The impact of HVLSPMSM torque ripple frequency, radial electromagnetic force spatial–temporal distribution and rotor unbalanced magnetic tension force by ITSF is revealed. Finally, the electromagnetic–mechanical coupling model of HVLSPMSM is established, and the vibration spectra of the motor with different degrees of ITSF are solved by numerical calculation.

Findings

In this study, it is found that the 2np order flux density harmonics and (2 N + 1) p order electromagnetic forces are not generated when ITSF occurs in HVLSPMSM.

Originality/value

By analyzing the multi-harmonics of HVLSPMSM after ITSF, this paper provides a reliable method for troubleshooting from the perspective of vibration and torque fluctuation and rotor unbalanced electromagnetic force.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 August 2024

Juanyan Miao, Yiwen Li, Siyu Zhang, Honglei Zhao, Wenfeng Zou, Chenhe Chang and Yunlong Chang

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for…

Abstract

Purpose

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for welding technology, so the optimization and improvement of traditional welding methods become urgent needs.

Design/methodology/approach

External magnetic field assisted welding is an emerging technology in recent years, acting in a non-contact manner on the welding. The action of electromagnetic forces on the arc plasma leads to significant changes in the arc behavior, which affects the droplet transfer and molten pool formation and ultimately improve the weld seam formation and joint quality.

Findings

In this paper, different types of external magnetic fields are analyzed and summarized, which mainly include external transverse magnetic field, external longitudinal magnetic field and external cusp magnetic field. The research progress of welding behavior under the effect of external magnetic field is described, including the effect of external magnetic field on arc morphology, droplet transfer and weld seam formation law.

Originality/value

However, due to the extremely complex physical processes under the action of the external magnetic field, the mechanism of physical fields such as heat, force and electromagnetism in the welding has not been thoroughly analyzed, in-depth theoretical and numerical studies become urgent.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 September 2022

Yufeng Guo, Chuang Zhang, Lei Qi, Haixu Yu, Suzhen Liu and Liang Jin

The purpose of this study is to develop an electromagnetic loading method for online measurement of the acoustoelastic coefficients and bus bar plane stress.

Abstract

Purpose

The purpose of this study is to develop an electromagnetic loading method for online measurement of the acoustoelastic coefficients and bus bar plane stress.

Design/methodology/approach

A method based on the combination of electromagnetic loading and the acoustoelastic effect is proposed to realize online measurement of acoustoelastic coefficients and plane stress. Electromagnetic loading is performed on the bus bar specimen, and the acoustoelastic coefficients and the bus bar plane stress are obtained by the ultrasonic method. An electromagnetic loading experimental platform is designed to provide electromagnetic force to the metal plate, including an electromagnetic loading module, an ultrasonic testing module and a stress simulation module.

Findings

The feasibility of the proposed electromagnetic loading method is proved by verification experiments. The acoustoelastic coefficients and plane stress measured using the electromagnetic loading method are more accurate than those measured using the traditional method.

Originality/value

The proposed electromagnetic loading method provides a new study perspective and enables more accurate measurement of the acoustoelastic coefficients and plane stress. The study provides an important basis for evaluating the operation status of electrical equipment.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 May 2022

Li Zhang, Jiangjun Ruan and Daochun Huang

This paper aims to establish the mathematical model and solve the complex calculation multi-field coupling problem for an electromagnetic overhead transmission line galloping…

Abstract

Purpose

This paper aims to establish the mathematical model and solve the complex calculation multi-field coupling problem for an electromagnetic overhead transmission line galloping excitation test system.

Design/methodology/approach

An electromagnetic excitation test system is introduced. To calculate the vibration response of the transmission line, a transient coupled finite element model containing electromagnetic repulsive mechanism and transmission line system was established. Considering the advantages of Newmark-ß algorithm and fourth-order Runge–Kutta algorithm, the two algorithms are combined to solve the model. Compared with the simulation results of existing commercial finite element software, the accuracy of the calculation model of electromagnetic force and wire vibration response are verified.

Findings

Comparison results show that the proposed calculation model can accurately obtain the force of electromagnetic mechanism and the vibration response of the overhead power lines, and improve the calculation efficiency. The calculation results show that vibration under electromagnetic excitation presents a double half-wave mode, and the galloping amplitude varies according to the charging voltage.

Originality/value

This paper built the transient simulation model for a galloping test system. The Newmark-ß algorithm and the fourth-order Runge–Kutta algorithm are used to solve the model. The research results are of great significance for the actual galloping test system design.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 November 2020

Y.S. Wang, H. Guo, Tao Yuan, L.F. Ma and Changcheng Wang

Electromagnetic noise of permanent magnet synchronous motor (PMSM) seriously affects the sound quality of electric vehicles (EVs). This paper aims to present a comprehensive…

Abstract

Purpose

Electromagnetic noise of permanent magnet synchronous motor (PMSM) seriously affects the sound quality of electric vehicles (EVs). This paper aims to present a comprehensive process for the electromagnetic noise analysis and optimization of a water-cooled PMSM.

Design/methodology/approach

First, the noises of an eight-pole 48-slot PMSM in at speeds up to 10,000 rpm are measured. Furthermore, an electromagnetic-structural-acoustic model of the PMSM is established for multi-field coupling simulations of electromagnetic noises. Finally, the electromagnetic noise of the PMSM is optimized by using the multi-objective genetic algorithm, where a multi-objective function related to the slot width of PMSM stator is defined for radial electromagnetic force (REF) optimization.

Findings

The experimental results show that main electromagnetic noises are the 8n-order (n = 1, 2, 3, …) and 12-order noises. The simulated results show that the REFs are mainly generated by the 8n-order (n = 1, 2, 3, 4, 5, 6) vibrations, especially those of the 8th, 16th, 24th and 32th orders. The 12-order noise is a mechanical noise, which might be caused by the bearings and other structures of the PMSM. Comparing the simulated results before and after optimization, both the REFs and electromagnetic noises are effectively reduced, which suggests that an appropriate design of stator slot is important for reducing electromagnetic noise of the PMSM.

Originality/value

In view of applications, the methods proposed in this paper can be applied to other types of PMSM for generation mechanism analysis of electromagnetic noise, optimal design of PMSM and thereby noise improvement of EVs.

Article
Publication date: 1 June 2000

P.Di Barba

Introduces the fourth and final chapter of the ISEF 1999 Proceedings by stating electric and magnetic fields are influenced, in a reciprocal way, by thermal and mechanical fields…

Abstract

Introduces the fourth and final chapter of the ISEF 1999 Proceedings by stating electric and magnetic fields are influenced, in a reciprocal way, by thermal and mechanical fields. Looks at the coupling of fields in a device or a system as a prescribed effect. Points out that there are 12 contributions included ‐ covering magnetic levitation or induction heating, superconducting devices and possible effects to the human body due to electric impressed fields.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 March 2012

Jianmin Su and Yunfeng Dong

Fractionated satellite clusters need coming together and avoiding crashing with limited random initial relative motion conditions. It is not necessary to keep the invariable…

Abstract

Purpose

Fractionated satellite clusters need coming together and avoiding crashing with limited random initial relative motion conditions. It is not necessary to keep the invariable configuration. The purpose of this paper is to put forward a control law which simulates organism swarm motion.

Design/methodology/approach

The motion of satellites follows three rules: coming together, velocity homology and avoiding crash. According to the rules, three control forces should be applied to satellite individuals. The final control force is the sum of three control forces. Electromagnetic dipole strengths calculation is formulated as nonlinear optimization problem. Considering control strengths have to be got in real time, iterative steps of optimization algorithm are fixed.

Findings

A control law which simulates organism swarm motion is put forward. The simulation shows the organism swarm motion simulation control law can keep fractionated satellite cluster coming together and avoiding crash. When iterative steps of optimization algorithm is fixed, the error of solve nonlinear equations is acceptable.

Originality/value

The control law is robust and easy to realize. When electromagnetic satellite cluster need not keep fixed configuration, it is a choice of control law of relative motion.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 13 May 2022

Guozhen Zhang, Rui Nie, Jikai Si, Xiaohui Feng and Changli Wang

This study aims to unveil the generation mechanism of the thrust force in a tubular flux-switching permanent magnet (PM) linear (TFSPML) machine; the operation principle of the…

Abstract

Purpose

This study aims to unveil the generation mechanism of the thrust force in a tubular flux-switching permanent magnet (PM) linear (TFSPML) machine; the operation principle of the TFSPML machine is analyzed.

Design/methodology/approach

First, the air-gap flux density harmonic characteristics excited by PMs and armature windings are investigated and summarized based on a simple magnetomotive force (MMF)-permeance model. Then, the air-gap field modulation theory is applied in analyzing the air-gap flux density harmonics that contribute to the electromagnetic force. In addition, a simple method for separating the end force of the TFSPML machine is proposed, which is a significant foundation for the comprehensive analysis of this type of machine. As a result, the operation principle of the TFSPML machine is thoroughly revealed.

Findings

The analysis shows that the average electromagnetic force is mainly contributed by the air-gap dominant harmonics, and the thrust force ripple is mainly caused by the end force.

Originality/value

In this paper, the operation principle of the TFSPML machine is analyzed from the perspective of air-gap field modulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 3000