Search results

1 – 10 of over 30000
Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 July 2023

Rui Nie, Yaqian Meng, Peixin Wang, Peng Su and Jikai Si

The purpose of this study is to calculate the normal force of a two degree of freedom direct drive induction motor considering coupling effects based on an analytical model…

Abstract

Purpose

The purpose of this study is to calculate the normal force of a two degree of freedom direct drive induction motor considering coupling effects based on an analytical model. Compared with the traditional single degree of freedom motor, normal force characteristics of two-degree-of-freedom direct drive induction motor (2DOFDDIM) is affected by coupling effect when the machine is in a helical motion. To theoretically explain the influence mechanism of coupling effect, this paper conducts a quantitative analysis of the influence of coupling effect on normal force based on the established analytical model of normal force considering coupling effect.

Design/methodology/approach

Firstly, the normal forces generated by 2DOFDDIM in linear motion, rotary motion and helical motion are investigated and compared to prove the effect of the coupling effect on the normal force. During this study, several coupling factors are established to modify the calculation equations of the normal force. Then, based on the multilayer theoretical method and Maxwell stress method, a novel normal force calculation model of 2DOFDDIM is established taking the coupling effect into account, which can easily calculate the normal force of 2DOFDDIM under different motions conditions. Finally, the calculation results are verified by the results of 3D finite element model, which proves the correctness of the established calculating model.

Findings

The coupling effect produced by the helical motion of 2DOFDDIM affects the normal force.

Originality/value

In this paper, the analytical model of the normal force of 2DOFDDIM considering the coupling effect is established, which provides a fast calculation for the design of the motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 July 2011

Thomas Preisner, Christian Bolzmacher, Andreas Gerber, Karin Bauer, Eckhard Quandt and Wolfgang Mathis

The purpose of this paper is to investigate the accuracy of different force calculation methods and their impact on mechanical deformations. For this purpose, a micrometer scaled…

Abstract

Purpose

The purpose of this paper is to investigate the accuracy of different force calculation methods and their impact on mechanical deformations. For this purpose, a micrometer scaled actuator is considered, which consists of a micro‐coil and of a permanent magnet (PM) embedded in a deformable elastomeric layer.

Design/methodology/approach

For the magnetic field evaluation a hybrid numerical approach (finite element method/boundary element method (FEM/BEM) coupling and a FEM/BEM/Biot‐Savart approach) is used, whereas FEM is implemented for the mechanical deformation analysis. Furthermore, for the magneto‐mechanical coupling several force calculation methods, namely the Maxwell stress tensor, the virtual work approach and the equivalent magnetic sources methods, are considered and compared to each other and to laboratory measurements.

Findings

The numerically evaluated magnetic forces and the measured ones are in good accordance with each other with respect to the normal force acting on the PM. Nevertheless, depending on the used method the tangential force components differ from each other, which leads to slightly different mechanical deformations.

Research limitations/implications

Since the force calculations are compared to measurement data, it is possible to give a suggestion about their applicability. The mechanical behavior of the actuator due to the acting forces is solely calculated and therefore only an assumption concerning the deformation can be given.

Originality/value

A new kind of micrometer scaled actuator is numerically investigated by using two different hybrid approaches for the magnetic field evaluation. Based on those, the results of several force calculation methods are compared to measurement data. Furthermore, a subsequent structural analysis is performed, which shows slightly different mechanical deformations depending on the used force calculation method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2006

Andrzej Demenko, Ernest Mendrela and Wojciech Szeląg

The aim of the paper is to find the simple and accurate model for the analysis of a drive with a tubular linear permanent magnet machine (TLPMM). Attention is paid to the models…

Abstract

Purpose

The aim of the paper is to find the simple and accurate model for the analysis of a drive with a tubular linear permanent magnet machine (TLPMM). Attention is paid to the models that take into account the saturation effects and is useful in the calculations of electromagnetic forces.

Design/methodology/approach

A circuit model and a field‐circuit model (FCM) are considered. The FCM includes finite element (FE) formulation for the axisymmetric electromagnetic field, equations which define the connections of windings and converter elements, and expressions that describe the control system. The FE method is used to determine the parameters of the circuit model. In order to simplify the circuit model, saturation effects caused by armature reaction are ignored. The electromagnetic force calculation is based on the virtual work principle and uses an approximate expression for the derivative of system co‐energy. The results obtained for the proposed models have been compared.

Findings

The proposed FE method of force calculation conforms with the applied method of movement simulation. For the rotor position when the cogging force is equal to zero the calculated cogging force is “almost” zero within seven‐decimal‐place accuracy. The effects of armature reaction on the performance of a TLPMM machine are similar to those which occur in a classical DC machine; in particular the demagnetising effect caused by saturation is observed.

Originality/value

The paper shows the influence of the saturation effects on the electromagnetic force of a TLPMM. In the case of “strong saturation”, the classical circuit model may be inappropriate for engineering calculations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2017

Pengzhen Lu, Hua Shao and Jian Ting Cheng

The purpose of this paper is to develop a simplified optimization calculation method to assess cable force of self-anchored suspension bridge based on optimization theories.

168

Abstract

Purpose

The purpose of this paper is to develop a simplified optimization calculation method to assess cable force of self-anchored suspension bridge based on optimization theories.

Design/methodology/approach

A simplified analysis method construction using Matlab is developed, which is then compared with the optimization method that considers the main cable’s geometric nonlinearity with software ANSYS in an actual bridge calculation.

Findings

This contrast proves the weak coherence and the adjacently interaction theory unreasonable and its limitation.

Originality/value

This paper analyzes the calculation method to assess cable force of a self-anchored suspension bridge and its application effect.

Details

Engineering Computations, vol. 34 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 January 2022

Gang Liu, Fengshan Ma, Maosheng Zhang, Jie Guo and Jun Jia

Continua and discontinua coexist in natural rock materials. This paper aims to present an improved approach for addressing the mechanical response of rock masses based on the…

Abstract

Purpose

Continua and discontinua coexist in natural rock materials. This paper aims to present an improved approach for addressing the mechanical response of rock masses based on the combined finite-discrete element method (FDEM) proposed by Munjiza.

Design/methodology/approach

Several algorithms have been programmed in the new approach. The algorithms include (1) a simpler and more efficient algorithm to calculate the contact force; (2) An algorithm for tangential contact force closer to the actual physical process; (3) a plastic yielding criterion (e.g. Mohr-Coulomb) to modify the elastic stress for fitting the mechanical behavior of elastoplastic materials; and (4) a complete code for the mechanical calculation to be implemented in Matrix Laboratory (MATLAB).

Findings

Three case studies, including two standard laboratory experiments (uniaxial compression and Brazilian split test) and one engineering-scale anti-dip slop model, are presented to illustrate the feasibility of the Y-Mat code and its ability to deal with multi-scale rock mechanics problems. The results, including the progressive failure process, failure mode and trajectory of each case, are acceptable compared to other corresponding studies. It is shown that, the code is capable of modeling geotechnical and geological engineering problems.

Originality/value

This article gives an improved FDEM-based numerical calculation code. And, feasibility of the code is verified through three cases. It can effectively solve the geotechnical and geological engineering problems.

Details

Engineering Computations, vol. 39 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 May 2009

Ghislain Remy, Julien Gomand, Abdelmounaïm Tounzi and Pierre‐Jean Barre

The purpose of this paper is to present an analysis of the force ripples of an open slot permanent magnet linear synchronous motor (PMLSM). A calculation procedure using 2D finite…

Abstract

Purpose

The purpose of this paper is to present an analysis of the force ripples of an open slot permanent magnet linear synchronous motor (PMLSM). A calculation procedure using 2D finite elements method (2D‐FEM) is then evaluated with experimentations.

Design/methodology/approach

First, the studied PMLSM and its main features are introduced. Then, the 2D‐FEM model used to study the motor is presented. The methods used to calculate the force and the meshing procedures are also highlighted. The calculated no‐load force is compared to measurements. Lastly, the validated model is used to study the influence of the current magnitude on the force ripples at load.

Findings

In addition to the no‐load case, the influence of the current magnitude on these forces is presented.

Originality/value

The paper is orientated with a sound industrial background. For that reason, the impact of the current saturation on the thrust generation is presented via the evolution of the thrust coefficient, which is the force to the RMS currents ratio.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2009

Hardo May, Jan Hoffmann, Wolf‐Ruediger Canders and Ryszard Palka

The purpose of this paper is to focus on superconducting magnetic bearings (SMB). SMB for high‐speed rotors are contact free and offer inherently stable operations thus they are…

Abstract

Purpose

The purpose of this paper is to focus on superconducting magnetic bearings (SMB). SMB for high‐speed rotors are contact free and offer inherently stable operations thus they are best qualified for the support of horizontally aligned rotors of turbo machines for gas‐compressors and expanders, e.g. special attentions have to be concentrated on the force activation of the SMB without dislocating the rotor from the aligned position.

Design/methodology/approach

For the activation of cylindrically shaped SMB‐designs, appropriate units with movable superconductor parts have been developed. They permit the maintenance of the rotor together with the field excitation unit in the aligned un‐displaced position. The eddy currents in the conducting cylinder of an EDD are induced by spatial fluctuations of the field and thus have been determined by transient calculations. The mechanical oscillation of the rotor was considered by a step‐wise displacement of the damper‐plate.

Findings

As the rotors of both the machine and the SMB operate best with reduced clearance to the stators, the shaft cannot be displaced to activate the force of horizontally aligned superconducting bearing assemblies. Thus, for cylindrical, co‐axial SMB‐designs the stator is shaped as two half shells embracing the SMB‐rotor. For the force activation the following procedure has to be carried out within the Dewar without displacing the shaft: at first the half shells are retreated from the rotor (warm HTSC) and after the cooling they are moved against the inner part of the warm bore thus generating the forces to compensate the weight and disturbances of the rotor. In case of planar‐cylindrical SMB‐designs, which are specially suited for extreme high speed applications, the bearing stators consist of a planar cylinder plate of HTSC‐bulks. The force activation is realised by lifting and descending the Dewar with the HTSC parts as a whole independently from the position of the rotor. The radial forces of the EDD and their partitioning in components which contribute to the damping‐ and to the spring‐force have been determined for different frequencies up to 160 Hz. To achieve accuracies in the percent range, the values of the time steps have to be well adapted to the electro dynamic conditions as oscillation frequency and conductivity.

Originality/value

Only the presented activation devices with movable HTSC stator parts enable the application of SMB even for horizontally aligned high‐speed rotors with reduced radial clearance. The recently developed fully integrated EDD secure a safe run of the rotor even during the speed up – passing the eigenfrequency in particular.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 January 2007

Olivier Barre and Pascal Brochet

The purpose of this paper is to introduce a simplified method to calculate an estimation of local forces acting on a body submitted to electric or magnetic fields. With…

2956

Abstract

Purpose

The purpose of this paper is to introduce a simplified method to calculate an estimation of local forces acting on a body submitted to electric or magnetic fields. With experimentations, the method is thereafter evaluated.

Design/methodology/approach

When an external strength exists on a body, its deformation is an effect always observed. With materials with low elasticity modulus, such a deformation becomes visible and its measurement can be used to validate numerical simulations. Using similarities between electric and magnetic behaviour laws, magnetic problems can be modelled with an electric field approach and studied with an experiment that also uses an electric field.

Findings

Geometrical singularities and their effects on calculations are not always well taken into account by a finite element resolution. An adaptive mesh refinement is often required. If such mesh refinement is refused, another solution can be explored. The goal is to know the external stress distribution induced by the field. The methods only focus on this stress distribution and assume that the magnetic or electric field distribution is imprecise when it is calculated near geometrical singularities. The stress distributions suggested are verified with experiments.

Originality/value

Using new materials with particular physical properties provides a new concept of experimental validation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 24 November 2022

Zhou Shi, Jiachang Gu, Yongcong Zhou and Ying Zhang

This study aims to research the development trend, research status, research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder…

Abstract

Purpose

This study aims to research the development trend, research status, research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.

Design/methodology/approach

Based on the investigation and analysis of the development history, structure form, structural parameters, stress characteristics, shear connector stress state, force transmission mechanism, and fatigue performance, aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge, the development trend, research status, research results and existing problems are expounded.

Findings

The shear-compression composite joint has become the main form in practice, featuring shortened length and simplified structure. The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder. The reasonable thickness of the bearing plate is 40–70 mm. The calculation theory and simplified calculation formula of the overall bearing capacity, the nonuniformity and distribution laws of the shear connector, the force transferring ratio of steel and concrete components, the fatigue failure mechanism and structural parameters effects are the focus of the research study.

Originality/value

This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 10 of over 30000