Search results

1 – 10 of 118
Article
Publication date: 8 June 2023

Kawaljit Singh Randhawa

The purpose of this study is to look into the hygroscopic and tribo-mechanical properties of a polypropylene/polyamide-6 (PP/PA6) blend and a PP/PA6/Boron sesquioxide composite.

Abstract

Purpose

The purpose of this study is to look into the hygroscopic and tribo-mechanical properties of a polypropylene/polyamide-6 (PP/PA6) blend and a PP/PA6/Boron sesquioxide composite.

Design/methodology/approach

The hygroscopic behaviour of the PP/PA6 blend and PP/PA6/Boron sesquioxide composite was studied using a water contact angle goniometer in this study. To validate the hygroscopic behaviour of the blend and composite, water contact angles and surface energy of the materials were investigated. Tensile strength and hardness tests were used to determine mechanical characteristics, and tribological experiments on a pin-on-disc tribometer were used to demonstrate the friction and wear rates of dry and water-conditioned blends and composites. The melting temperature of dry and water-conditioned composites was determined using DSC analysis.

Findings

The hygroscopic effect of the PP/PA6 blend was found to be minimal in the experiment, while it was relatively dominating in the PP/PA6/Boron sesquioxide composite. Tensile strength was found to be somewhat lower in blend and composite compared to virgin PP, whereas hardness was found to be higher in both blend and composite. The composite’s tribological testing findings were fairly outstanding, with the coefficient of friction (COF) and wear rates significantly reduced due to boron sesquioxide reinforcement. The reaction between boron sesquioxide and water molecules produced boric acid, which increased the tribological characteristics of the composite even further. Following 30 days of water conditioning, the weight of the blend increased by 3.64% and the weight of the composite increased by 6.45% as compared to the dry materials. After water conditioning, tensile strength reduced by 0.8% for the blend and 14.16% for the composite. Hardness was determined to be the same in the dry state and after water-conditioning for blend but dropped 1% for composite. As compared to blend, the COF and wear resistance of composite were 15.52% and 25.16% higher, respectively. After absorbing some water, the results increased to 28.57% and 34.9%, respectively.

Originality/value

The mechanical and thermal behaviour of polymer composites (particularly polyamide composites) vary depending on the surrounding environment. Tests were carried out to explore the effect of water treatment on the tribo-mechanical and thermal characteristics of PP/PA6/Boron sesquioxide composite. Water treatment caused polyamides to bind with water molecules, resulting in voids in the material. The interaction between boron sesquioxide and water molecules produced boric acid, which increased the tribological characteristics of the composite.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 5 November 2020

Dorji Nidup, Somboon Kietinun, Sunyarn Niempoog and Kusuma Sriyakul

Rtsa-byugs, a massage oil from Bhutan, is a traditional herbal formula known for its anti-inflammatory properties and used in osteoarthritis treatment. This study investigates the…

Abstract

Purpose

Rtsa-byugs, a massage oil from Bhutan, is a traditional herbal formula known for its anti-inflammatory properties and used in osteoarthritis treatment. This study investigates the efficacy of rtsa-byugs vs diclofenacgel in relieving knee pain in osteoarthritis patients.

Design/methodology/approach

A single-blind, randomized controlled trial was conducted amongst osteoarthritis knee patients at an orthopedic outpatient department of Thammasat University Hospital. Participants were randomly allocated to the rtsa-byugs (N = 31) or the Diclofenac gel (N = 31) group. Primary outcomes were assessed by the knee injury and osteoarthritis outcome scores (KOOS), visual analog scale (VAS) and goniometer at day 0, 1, 3, 7.

Findings

62 participants completed the study. The result of the KOOS scores demonstrated a significant improvement of symptoms at the end of the study in both treatment groups. Improvement of symptoms, pain, daily life living, sport and recreational score and quality of life assessment showed a significant difference from baseline (p < 0.001) within both groups. The quality of life score for the rtsa-byugs group increased significantly on day 3 and 7. The VAS score in both groups decreased with a significant difference from baseline to day 7. The mean value of extension of angle measurement was decreased in day 7, and the mean of flexion score increased in both groups when compared with the baseline.

Research limitations/implications

The duration of the study was very limited and included a small sample consisting of men and women.

Originality/value

Rtsa-byugs is safe and effective in relieving pain from osteoarthritis of the knee and can be used as an alternative treatment for knee osteoarthritis.

Details

Journal of Health Research, vol. 35 no. 5
Type: Research Article
ISSN: 0857-4421

Keywords

Article
Publication date: 17 April 2023

Kawaljit Singh Randhawa

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and…

Abstract

Purpose

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and wettability.

Design/methodology/approach

This review paper presents the various types of advanced ceramic materials according to their compounding elements, fabrication techniques of advanced ceramic powders as well as their consolidation, their characteristics, applications and wetting properties. Hydrophobic/hydrophilic properties of advanced ceramic materials are described in the paper with their state-of-the-art application areas. Optical properties of fine ceramics with their intrinsic characteristics are also presented within. Special focus is given to the brief description of application-based manipulation of wetting properties of advanced ceramics in the paper.

Findings

The study of wetting/hydrophobicity/hydrophilicity of ceramic materials is important by which it can be further modified to achieve the required applications. It also makes some sense that the material should be tested for its wetting properties when it is going to be used in some important applications like biomedical and dental. Also, these advanced ceramics are now often used in the fabrication of filters and membranes to purify liquid/water so the study of wetting characteristics of these materials becomes essential. The optical properties of advanced ceramics are equally making them suitable for many state-of-the-art applications. Dental, medical, imaging and electronics are the few sectors that use advanced ceramics for their optical properties.

Originality/value

This review paper includes various advanced ceramic materials according to their compounding elements, different fabrication techniques of powders and their consolidation, their characteristics, various application area and hydrophobic/hydrophilic properties.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 May 2022

Arun Kumar Bambam, Anil Dhanola and Kishor Kumar Gajrani

Nowadays, ionic liquids (ILs) are used as lubricant additives because of their ability to improve tribological characteristics. However, majority of the ILs contains halogen-based…

Abstract

Purpose

Nowadays, ionic liquids (ILs) are used as lubricant additives because of their ability to improve tribological characteristics. However, majority of the ILs contains halogen-based anions. They are extremely sensitive to moisture and produce detrimental halides and halogen acids when reacted with moisture and water. These halides and halogen acids are harmful to the health and environment of the operator’s. This paper aims to study four different lubricants including two halogen-based ILs blended in canola oil and two phosphonium-based halogen-free ILs blended in canola oil and in pure canola oil.

Design/methodology/approach

Viscosity and contact angle were measured by using rheometer and contact angle goniometer, respectively. Machining experiments were performed using turning centre with four different lubricants at two different cutting speeds and temperatures, and the machining forces, tool morphology and roughness of the machined surface were analysed.

Findings

The results showed that the inclusion of 1% phosphonium-based halogen-free ILs blended in canola oil increased the viscosity by 44.8% and reduced the cutting and thrust force by 21.7% and 26.8%, respectively, compared to pure canola oil lubricant. Microscopic analysis of tool showed lower adhesive and abrasive wear when machined with phosphonium-based halogen-free ILs blended in canola oil. The workpiece surface roughness reduced by 32% for phosphonium-based halogen-free ILs blended in canola oil compared with pure canola oil.

Originality/value

Halogen-free ILs are possible green lubricants, as they do not contain harmful elements such as F, S, B and Cl like halogen-based ILs. To the best of the authors’ knowledge, this is presumably the first work which shows machining performance of halogen-free ILs as lubricant additives.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 March 2022

T. Thendral Thiyaku

The purpose of this study is to develop active package films using clove essential oil (CEO) and biodegradable polybutylene adipate terephthalate (PBAT) with varying weight…

Abstract

Purpose

The purpose of this study is to develop active package films using clove essential oil (CEO) and biodegradable polybutylene adipate terephthalate (PBAT) with varying weight percentages of SiO2 nanoparticles (SiO2NPs), as well as to investigate the mechanical, barrier, thermal, optical, surface hydrophobicity and antibacterial properties of PBAT incorporated with CEO as a natural plasticizer and SiO2NPs as a nanofiller.

Design/methodology/approach

PBAT-based bio-composites films were fabricated with different weight percentage of CEO (5% and 10%) and nanosilica (1% and 3%) by solution casting method. The packaging performance was investigated using universal testing machine, spectrophotometer, contact angle goniometer, oxygen and water vapour permeability tester. The antibacterial properties of PBAT-based nanocomposite and composite films were investigated using the ISO 22196 by zone of inhibition method.

Findings

The mechanical results exhibited that the addition of 10 Wt.% of CEO into PBAT increases the percentage of elongation, whereas, the addition of 3 Wt.% of SiO2NPs increases the tensile strength of the composite film. The presence of CEO in PBAT exhibits a good barrier against water permeability and SiO2NPs in the PBAT matrix help to reduce the opacity and hydrophobicity. The antimicrobial and thermal results revealed that the inclusion of 10 Wt.% of CEO and 3 Wt.% of SiO2NPs into PBAT polymer improved antimicrobial and thermal resistance properties.

Originality/value

A new PBAT-based active packaging film developed using natural plasticizers CEO and nanofiller SiO2 with a wide range of applications in the active food packaging applications. Moreover, they have good surface hydrophobicity, thermal stability, mechanical, barrier and antibacterial properties.

Details

Pigment & Resin Technology, vol. 52 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 January 2010

Zonggen Qin and Weiping Tu

The purpose of this paper is to modify the surface property of polyacrylate latex films using only small amounts of fluorinated acrylate and to optimise the results of such a…

1107

Abstract

Purpose

The purpose of this paper is to modify the surface property of polyacrylate latex films using only small amounts of fluorinated acrylate and to optimise the results of such a modification.

Design/methodology/approach

The core‐shell particles with polyacrylate rich in core and containing fluorinated polymer rich in shell are prepared by a two‐stage semi‐continuous emulsion polymerisation under kinetically controlled conditions. The surface properties of the latex films produced from the core‐shell particles are investigated by optical goniometer measurement as well as contact angle method.

Findings

The latex films produced from the core‐shell particles exhibited surface energy of around 10 mN/m. The angle resolved X‐ray photoelectron spectrum measurements showed an increased average fluorine concentration in a surface layer thickness of a few nanometres, when compared to the fluorine concentration in the bulk.

Research limitations/implications

Methyl methacrylate, butyl acrylate and N‐methylol acrylamide monomers are used as co‐monomer to form the shell with fluoroalkyl methacrylate. By preparing core‐shell emulsion with a fluoropolymer in the shell phase, the surface property of polyacrylate latex films is efficiently modified by using only small amounts of fluorinated acrylate monomer.

Practical implications

The method developed provided a simple and practical solution to improving the surface property of polyacrylate latex films.

Originality/value

The method for enhancing surface property of polyacrylate latex films is novel and can find numerous applications in surface coating.

Details

Pigment & Resin Technology, vol. 39 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 April 1998

Winifred Aldrich, Brian Smith and Feng Dong

This paper describes research undertaken at the Nottingham Trent University which investigated body movements and their relationship to garment design. The study identifies the…

Abstract

This paper describes research undertaken at the Nottingham Trent University which investigated body movements and their relationship to garment design. The study identifies the difference between ergonomic measuring positions and the natural postures used by real figures in real activities. A new approach to the identification and coding of upper body postures has been made. A body coding system and a simple piece of equipment was designed that enables extended natural body positions to be recorded, thus achieving repeatability. This work enabled comparisons of aesthetic appearance and the functional comfort of women's tailored jackets to be examined.

Details

Journal of Fashion Marketing and Management: An International Journal, vol. 2 no. 4
Type: Research Article
ISSN: 1361-2026

Keywords

Article
Publication date: 1 January 2014

Banu Poobalan, Jeong Hyun Moon, Sang-Cheol Kim, Sung-Jae Joo, Wook Bahng, In Ho Kang, Nam-Kyun Kim and Kuan Yew Cheong

The high density of defects mainly attributed to the presence of silicon oxycarbides, residual C clusters, Si- and C-dangling bonds at or near the SiO2/SiC interface degrades the…

Abstract

Purpose

The high density of defects mainly attributed to the presence of silicon oxycarbides, residual C clusters, Si- and C-dangling bonds at or near the SiO2/SiC interface degrades the performance of metal-oxide-semiconductor (MOS) devices. In the effort of further improving the quality and enhancement of the SiC oxides thickness, post-oxidation annealed by a combination of nitric acid (HNO3) and water (H2O) vapor technique on thermally grown wet-oxides is introduced in this work. The paper aims to discuss these issues.

Design/methodology/approach

A new technique of post-oxidation annealing (POA) on wet-oxidized n-type 4H-SiC in a combination of HNO3 and H2O vapor at various heating temperatures (70°C, 90°C and 110°C) of HNO3 solution has been introduced in this work.

Findings

It has been revealed that the samples annealed in HNO3 + H2O vapour ambient by various heating temperatures of HNO3 solution; particularly at 110°C is able to produce oxide with lower interface-state density and higher breakdown voltage as compared to wet-oxidized sample annealed in N2 ambient. The substrate properties upon oxide removal show surface roughness reduces as the heating temperature of HNO3 solution increases, which is mainly attributed due to the significant reduction of carbon content at the SiC/SiO2 interface by C=N passivation and CO or CO2 out-diffusion.

Originality/value

Despite being as a strong oxidizing agent, vaporized HNO3 can also be utilized as nitridation and hydrogen passivation agent in high temperature thermal oxidation ambient and these advantages were demonstrated in 4H-SiC.

Details

Microelectronics International, vol. 31 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Open Access
Article
Publication date: 29 January 2018

Virginia P. Stofer, Scott McLean and Jimmy Smith

Wrist orthoses are used by occupational therapists to decrease pain, support weak muscles and protect tissues during healing. However, use of wrist orthoses has been observed to…

1120

Abstract

Purpose

Wrist orthoses are used by occupational therapists to decrease pain, support weak muscles and protect tissues during healing. However, use of wrist orthoses has been observed to produce compensatory movements in other upper extremity joints. This paper aims to determine whether wearing wrist orthoses produced compensatory movements of the elbow in addition to the shoulder when performing drinking and hammering tasks.

Design/methodology/approach

Two twin-axis electrogoniometers were positioned on the elbow and shoulder to track joint movement. The four conditions were drink with orthosis, hammer with orthosis, drink without orthosis and hammer without orthosis. Joint movement was defined as total angular excursion of the joint throughout the performance of the task. Separate 2 × 2 (joint × orthosis) repeated measures analyzes of variance (ANOVA) were used to evaluate differences in joint excursion of the elbow and shoulder joints between orthosis conditions for each task.

Findings

Wearing a wrist orthosis did not change the amount of joint excursion compared to not wearing an orthosis during the drinking and hammering tasks.

Originality/value

Findings suggest that wrist orthoses do not result in statistically significant changes in elbow and shoulder joint movements during simulated drinking and hammering tasks.

Details

Irish Journal of Occupational Therapy, vol. 46 no. 1
Type: Research Article
ISSN: 2398-8819

Keywords

Article
Publication date: 8 September 2021

Yuezong Wang, Jinghui Liu, Mengfei Guo and LiuQIan Wang

A three-dimensional (3D) printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. The purpose of this study is…

Abstract

Purpose

A three-dimensional (3D) printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. The purpose of this study is to analyze the influence of such errors on printing accuracy and printing quality for delta-robot 3D printer.

Design/methodology/approach

First, the kinematic model of a delta-robot 3D printer with an ideal geometric structure is proposed by using vector analysis. Then, the normal kinematic model of a nonideal delta-robot 3D robot with tilted vertical beams is derived based on the above ideal kinematic model. Finally, a 3D printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy.

Findings

The results show that tilted vertical beams can indeed cause 3D printing errors and further influence the 3D printing quality of the final products and that the 3D printing errors of tilted vertical beams are related to the rotation angles of the tilted vertical beams. The larger the rotation angles of the tilted vertical beams are, the greater the geometric deformations of the printed structures.

Originality/value

Three vertical beams and six horizontal beams constitute the supporting parts of the frame of a delta-robot 3D printer. In this paper, the orientations of tilted vertical beams are shown to have a significant influence on 3D printing accuracy. However, the effect of tilted vertical beams on 3D printing accuracy is difficult to capture by instruments. To reveal the 3D printing error mechanisms under the condition of tilted vertical beams, the error generation mechanism and the quantitative influence of tilted vertical beams on 3D printing accuracy are studied by simulating the parallel motion mechanism of a delta-robot 3D printer with tilted vertical beams.

Details

Rapid Prototyping Journal, vol. 27 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 118