Search results

1 – 10 of 104
Article
Publication date: 21 November 2018

Vivek C., Rajesh Ranganathan, Sivakumar Ganesan, Arivazhagan Pugalendhi, Sreekanth M.P. and Sivasankar Arumugam

This paper aims to develop a customized orthosis for treating congenital talipes equinovarus (clubfoot) deformity. Complications from non-surgical treatment method such as Ponseti…

Abstract

Purpose

This paper aims to develop a customized orthosis for treating congenital talipes equinovarus (clubfoot) deformity. Complications from non-surgical treatment method such as Ponseti method leads to relapse/recurrence of the foot after treated.

Design/methodology/approach

An alternate approach for treating clubfoot deformity can be seen as a viable approach to overcome the above-mentioned difficulties. Customized orthosis is designed and developed for a subject affected with right clubfoot deformity through fused deposition modeling of additive manufacturing (AM) technology with ABS plastic as base material. A unique mechanism is used to develop customized orthosis for achieving rotation of the foot along the three axis and range of motions.

Findings

Developed orthosis is incorporated with a unique mechanism that can be rotated and arrested at the specified angle along the three principle ranges of motion of the foot. Overall weight of the developed customized orthosis achieved is about 284 g, which has a significant 25 per cent reduction in weight when compared to traditional Ponseti casting method. Overcoming the difficulties faced in Ponseti method, customized orthosis can be an alternative method for treating clubfoot.

Originality/value

Developed orthosis will be an alternative approach for treating clubfoot deformity, and it overcomes the drawbacks faced by Ponseti method.

Details

Rapid Prototyping Journal, vol. 25 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 January 2014

David Palousek, Jiri Rosicky, Daniel Koutny, Pavel Stoklásek and Tomas Navrat

– The purpose of this paper is to describe a manufacturing methodology for a wrist orthosis. The case study aims to offer new approaches in the area of human orthoses.

2469

Abstract

Purpose

The purpose of this paper is to describe a manufacturing methodology for a wrist orthosis. The case study aims to offer new approaches in the area of human orthoses.

Design/methodology/approach

The article describes the utilization of rapid prototyping (RP), passive stereo photogrammetry and software tools for the orthosis design process. This study shows the key points of the design and manufacturing methodology. The approach uses specific technologies, such as 3D digitizing, reverse engineering and polygonal-surface software, FDM RP and 3D printing.

Findings

The results show that the used technologies reflect the patient's requirements and also they could be an alternative solution to the standard method of orthosis design.

Research limitations/implications

The methodology provides a good position for further development issues.

Practical implications

The methodology could be usable for clinical practice and allows the manufacturing of the perfect orthosis of the upper limb. The usage of this methodology depends on the RP system and type of material.

Originality/value

The article describes a particular topical problem and it is following previous publications in the field of human orthoses. The paper presents the methodology of wrist orthosis design and manufacturing. The paper presents an alternative approach applicable in clinical practice.

Details

Rapid Prototyping Journal, vol. 20 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 November 2021

Wiktoria Maria Wojnarowska, Jakub Najowicz, Tomasz Piecuch, Michał Sochacki, Dawid Pijanka, Jolanta Trybulec and Sławomir Miechowicz

Chicken orthoses that cover the ankle joint area are not commercially available. Therefore, the main purpose of this study is to fabricate a customised temporary Ankle–Foot…

Abstract

Purpose

Chicken orthoses that cover the ankle joint area are not commercially available. Therefore, the main purpose of this study is to fabricate a customised temporary Ankle–Foot Orthosis (AFO) for a chicken with a twisted ankle using computer-aided design (CAD) and three-dimensional (3D) printing. The secondary objective of the paper is to present the specific application of Additive Manufacturing (AM) in veterinary medicine.

Design/methodology/approach

The design process was based on multiple sketches, photos and measurements that were provided by the owner of the animal. The 3D model of the orthosis was made with Autodesk Fusion 360, while the prototype was fabricated using fused deposition modelling (FDM). Evaluation of the AFO was performed using the finite element method.

Findings

The work resulted in a functional 3D printed AFO for chicken. It was found that the orthosis made with AM provides satisfactory stiffen and a good fit. It was concluded that AM is suitable for custom bird AFO fabrication and, in some respects, is superior to traditional manufacturing methods. It was also concluded that the presented procedure can be applied in other veterinary cases and to other animal species and other parts of their body. AM provides veterinary with a powerful tool for the production of well-fitted and durable orthoses for animals.

Research limitations/implications

The study does not include the chicken's opinion on the comfort or fit of the manufactured AFO due to communication issues. Evaluation of the final prototype was done by the researchers and the animal owner.

Originality/value

No evidence was found in the literature on the use of AM for chicken orthosis, so this study is the first to describe such an application of AM. In addition, the study demonstrates the value of AM in veterinary medicine, especially in the production of devices such as orthoses.

Details

Rapid Prototyping Journal, vol. 28 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 February 2008

A.G. Bache

The present field of prosthetics/orthotics is an erratic agglomerate of vague guidelines, skills and knowledge. The author conceived prosthotology to clarify, expand and enlighten…

516

Abstract

Purpose

The present field of prosthetics/orthotics is an erratic agglomerate of vague guidelines, skills and knowledge. The author conceived prosthotology to clarify, expand and enlighten prosthetics/orthotics into a science with a solid foundation and clear framework. This paper seeks to present itself as an introduction to the field and its relationship with cybernetics and systems.

Design/methodology/approach

Prosthotology achieves this by disregarding the established barriers between the human body, mind and environment. This traditional scheme is replaced by focusing on goals and goal systems instead. A goal system consists of a goal former and a goal achiever. When a goal achiever cannot achieve a goal, it can be amended. If a goal achiever cannot initialise, a prosthesis may provide amendment. If a goal achiever cannot propagate, an orthosis may provide amendment.

Findings

This perspective enables one to focus on a person's needs, what exactly is inhibiting these needs, and how best to permit the needs to be granted. It does not assume that, in order to achieve a goal, only the human body can be used.

Practical implications

Prosthotology provides direction and advancement for prosthetics and orthotics. It also enhances integration of prosthetics and orthotics with other engineering disciplines.

Originality/value

So far one has only scratched the surface of the potential of prosthetics and orthotics, using prosthotology, this potential is obvious and a step closer.

Details

Kybernetes, vol. 37 no. 2
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 29 January 2018

Virginia P. Stofer, Scott McLean and Jimmy Smith

Wrist orthoses are used by occupational therapists to decrease pain, support weak muscles and protect tissues during healing. However, use of wrist orthoses has been observed to…

1119

Abstract

Purpose

Wrist orthoses are used by occupational therapists to decrease pain, support weak muscles and protect tissues during healing. However, use of wrist orthoses has been observed to produce compensatory movements in other upper extremity joints. This paper aims to determine whether wearing wrist orthoses produced compensatory movements of the elbow in addition to the shoulder when performing drinking and hammering tasks.

Design/methodology/approach

Two twin-axis electrogoniometers were positioned on the elbow and shoulder to track joint movement. The four conditions were drink with orthosis, hammer with orthosis, drink without orthosis and hammer without orthosis. Joint movement was defined as total angular excursion of the joint throughout the performance of the task. Separate 2 × 2 (joint × orthosis) repeated measures analyzes of variance (ANOVA) were used to evaluate differences in joint excursion of the elbow and shoulder joints between orthosis conditions for each task.

Findings

Wearing a wrist orthosis did not change the amount of joint excursion compared to not wearing an orthosis during the drinking and hammering tasks.

Originality/value

Findings suggest that wrist orthoses do not result in statistically significant changes in elbow and shoulder joint movements during simulated drinking and hammering tasks.

Details

Irish Journal of Occupational Therapy, vol. 46 no. 1
Type: Research Article
ISSN: 2398-8819

Keywords

Article
Publication date: 7 May 2019

Mohamed Amine Alouane, Hala Rifai, Kwangtaek Kim, Yacine Amirat and Samer Mohammed

This paper aims to deal with the design of new hybrid approach for the assistance of the flexion extension movement of the knee joint.

Abstract

Purpose

This paper aims to deal with the design of new hybrid approach for the assistance of the flexion extension movement of the knee joint.

Design/methodology/approach

The control approach combines the use of a knee joint orthosis along with functional electrical stimulation (FES) within an assist-as-needed paradigm. An active impedance controller is used to assist the generation of muscular stimulation patterns during the extension sub-phase of the knee joint movement. The generated FES patterns are appropriately tailored to achieve flexion/extension movement of the knee joint, which allows providing the required assistance by the subject through muscular stimulation. The generated torque through stimulation is tracked by a non-linear disturbance observer and fed to the impedance controller to generate the desired trajectory that will be tracked using a standard proportional derivative controller.

Findings

The approach was tested in experiments with two healthy subjects. Results show satisfactory performances in terms of estimating the knee joint torque, as well as in terms of cooperation between the FES and the orthosis actuator during the execution of the knee joint flexion/extension movements.

Originality/value

The authors designed a new hybrid approach for the assistance of the flexion extension movement of the knee joint, which has not been studied yet. The control approach combines the use of a knee joint orthosis along with FES within an assist-as-needed paradigm.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 October 2013

Mohamed E. Lalami, Hala Rifaï, Samer Mohammed, Walid Hassani, Georges Fried and Yacine Amirat

– The purpose of this paper is the control of lower limb orthosis acting at the knee joint level for a passive rehabilitation purpose.

Abstract

Purpose

The purpose of this paper is the control of lower limb orthosis acting at the knee joint level for a passive rehabilitation purpose.

Design/methodology/approach

A control law, based on a saturated proportional derivative controller, is proposed in order to drive the shank-foot-orthosis system along a desired trajectory.

Findings

The proposed control law is tested in real time using the orthosis EICOSI of the LISSI-Laboratory. The experiments show that the proposed control law is capable of providing satisfactory trajectory tracking performance given only the knee joint angle measurement. Moreover, the control law is robust with respect to external disturbances.

Originality/value

Robust control of an actuated lower limb orthosis.

Details

Industrial Robot: An International Journal, vol. 40 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 June 2018

Rihab Bkekri, Anouar Benamor, Mohamed Amine Alouane, Georges Fried and Hassani Messaoud

Assistive technology products are designed to provide additional accessibility to individuals who have physical or cognitive difficulties, impairments and disabilities. The…

Abstract

Purpose

Assistive technology products are designed to provide additional accessibility to individuals who have physical or cognitive difficulties, impairments and disabilities. The purpose of this paper is to deal with the control of a knee joint orthosis intended to be used for rehabilitation and assistive purpose; this control aims to reduce the influence of the uncertainties and eliminating the external disturbances in the system.

Design/methodology/approach

This paper deals with the robust adaptive sliding mode controller (ASMC) of human-driven knee joint orthosis system with mismatched uncertainties and external disturbances. The shank-orthosis system has been modeled and its parameters have been identified. This control reduces the effect of parameter uncertainties and external disturbances on the system performance and improves the system robustness as results. The ASMC was designed to offer the possibility to track the state of the reference model. Moreover, the Lyapunov stability theory was used to study the asymptotical stability of the ASMC.

Findings

The advantage of the robust ASMC method is the tracking precision and reducing the required time for eliminating external disturbances and uncertainties. The experimental results show in real-time in terms of stability and present that the advantages of this control approach are the position tracking and robustness.

Originality/value

In this paper, to deal with the parameter uncertainties of the human-driven knee joint orthosis, an ASMC was successfully applied based on sliding mode and Lyapunov stability theory. It has good dynamic response and tracking performance. Besides, the adaptive algorithm is simple, easy to achieve and has good adaptability and robustness against the parameter variations and external disturbances. The design technique is simple and efficient. The development of this control takes into consideration the perturbation, allowing to track a desired trajectory.

Details

Industrial Robot: An International Journal, vol. 45 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 June 2019

Rihab Bkekri, Anouar Benamor, Mohamed Amine Alouane, Georges Fried and Hassani Messaoud

The application of the sliding mode control has two obstacle phenomena: chattering and high activity of control action. The purpose of this paper concerns a novel super-twisting…

Abstract

Purpose

The application of the sliding mode control has two obstacle phenomena: chattering and high activity of control action. The purpose of this paper concerns a novel super-twisting adaptive sliding mode control law of a human-driven knee joint orthosis. The proposed control approach consists of using dynamically adapted control gains that ensure the establishment, in a finite time, of a real second-order sliding mode. The efficiency of the controller is evaluated using an experimental set-up.

Design/methodology/approach

This study presents the synthesis of a robust super-twisting adaptive controller for the control of a lower limb–orthosis system. The developed control strategy will take into consideration the nonlinearities as well as the uncertainties resulting from the dynamics of the lower limb–orthosis system. It must also guarantee a good follow-up of the reference trajectory.

Findings

The authors first evaluated on a valid subject, the performances of this controller which were studied and compared to several criteria. The obtained results show that the controller using the Adaptive Super-Twisting algorithm is the one that guarantees the best performance. Validation tests involved a subject and included robustness tests against external disturbances and co-contractions of antagonistic muscles.

Originality/value

The main contribution of this paper is in developing the adaptation super-twisting methodology for finding the control gain resulting in the minimization of the chattering effect.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 February 2020

Vito Ricotta, Robert Ian Campbell, Tommaso Ingrassia and Vincenzo Nigrelli

The purpose of this paper is to implement a new process aimed at the design and production of orthopaedic devices fully manufacturable by additive manufacturing (AM). In this…

Abstract

Purpose

The purpose of this paper is to implement a new process aimed at the design and production of orthopaedic devices fully manufacturable by additive manufacturing (AM). In this context, the use of generative algorithms for parametric modelling of additively manufactured textiles (AMTs) also has been investigated, and new modelling solutions have been proposed.

Design/methodology/approach

A new method for the design of customised elbow orthoses has been implemented. In particular, to better customise the elbow orthosis, a generative algorithm for parametric modelling and creation of a flexible structure, typical of an AMT, has been developed.

Findings

To test the developed modelling algorithm, a case study based on the design and production of an elbow orthosis made by selective laser sintering was investigated. The obtained results have demonstrated that the implemented algorithm overcomes many drawbacks typical of the traditional computer aided design (CAD) modelling approaches. The parametric CAD model of the orthosis obtained through the new approach is characterised by a flexible structure with no deformations or mismatches and has been effectively used to produce the prototype through AM technologies.

Originality/value

The obtained results present innovative elements of originality in the CAD modelling sector, which can contribute to solving problems related to modelling for AM in different application fields.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 104