Search results

1 – 10 of over 3000
Article
Publication date: 13 March 2017

Hongbin Xuan and Gongjun Cui

To improve the wear resistance of the sliding boot, the wear-resistant Fe-21 Wt.% Cr-5 Wt.% B alloy is prepared, and the wear mechanism is studied under dry sliding condition.

Abstract

Purpose

To improve the wear resistance of the sliding boot, the wear-resistant Fe-21 Wt.% Cr-5 Wt.% B alloy is prepared, and the wear mechanism is studied under dry sliding condition.

Design/methodology/approach

The anti-wear Fe-21 Wt.% Cr-5 Wt.% B alloy is prepared by powder metallurgy technique. The tribological behavior of Fe-Cr-B alloy sliding against ASTM 1045 steel pin is studied at 30-60 N and 0.03-0.12 m/s using a reciprocating pin-on-disk tribometer under dry sliding condition. Meanwhile, the ASTM 5140 and 3316 steel are studied as compared samples.

Findings

The friction coefficients of tested specimens increase with the increasing normal load. However, this effect is the opposite in case of different sliding speeds. The specific wear rates increase as the sliding speed and normal load increase. The Fe-Cr-B alloy shows the best tribological properties under the dry sliding condition and the wear mechanism is mainly ploughing.

Originality/value

This wear-resistant Fe-21 Wt.% Cr-5 Wt.% B alloy can replace the traditional materials to process the sliding shoes and improve the service life of coal mining machine.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 November 2017

Dawit Zenebe Segu and Pyung Hwang

This study aims to compare the friction and wear behaviors of Fe68.3C6.9Si2.5 B6.7P8.8Cr2.2Al2.1Mo2.5 bulk metallic glass (BMG) under sliding using dry, deionized water-lubricated…

Abstract

Purpose

This study aims to compare the friction and wear behaviors of Fe68.3C6.9Si2.5 B6.7P8.8Cr2.2Al2.1Mo2.5 bulk metallic glass (BMG) under sliding using dry, deionized water-lubricated and oil-lubricated conditions. The comparison was performed using a unidirectional ball-on-flat tribometer under different applied loads, and the results were compared to the properties of a conventional material, SUJ2. Fe-based BMG materials have recently been attracting a great deal of attention for prospective engineering applications.

Design/methodology/approach

As a part of the development of Fe-based BMGs that can be cost-effectively produced in large quantities, an Fe-based BMG Fe68.8C7.0Si3.5B5.0P9.6 Cr2.1Mo2.0Al2.0 with high glass forming ability was fabricated. In the present study, the friction and wear properties of Fe-based BMG has been comparatively evaluated under dry sliding, deionized water- and oil-lubricated conditions using a unidirectional ball-on-flat tribometer under different applied loads, and the results were compared to the properties of conventional material SUJ2.

Findings

The results show that the Fe-based BMG had better friction performance than the conventional material. Both the friction coefficient and wear mass loss increased with increasing load. The sliding wear mechanism of the BMG changed with the sliding conditions. Under dry sliding conditions, the wear scar of the Fe-based BMG was characterized by abrasive wear, plastic deformation, micro-cracks and peeling-off wear. Under water- and oil-lubricated conditions, the wear scar was mainly characterized by abrasive wear and micro-cutting.

Originality/value

In this investigation, the authors developed a new BMG alloy Fe68.8C7.0Si3.5B5.0P9.6Cr2.1Mo2.0Al2.0 to improve the friction and wear performance under dry sliding, deionized water- and oil- lubricated conditions.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 September 2012

N. Radhika, R. Subramanian, S. Venkat Prasat and B. Anandavel

Recent trends in material science show a considerable interest in the manufacturing of metal matrix composites to meet the stringent demands of lightweight, high strength and…

Abstract

Purpose

Recent trends in material science show a considerable interest in the manufacturing of metal matrix composites to meet the stringent demands of lightweight, high strength and corrosion resistance. Aluminium is the popular matrix metal currently in vogue that can be reinforced with ceramic materials such as particulates to meet the desired property. The purpose of this paper is to fabricate hybrid metal matrix composites to improve the dry sliding wear resistance and to study of the effect of sliding speed, load and reinforcement (alumina and graphite) on wear properties, as well as its contact friction.

Design/methodology/approach

The present study addresses the dry sliding wear behaviour of Al‐Si10Mg alloy reinforced with 3, 6 and 9 wt% of alumina along with 3 wt% of graphite. Stir casting method was used to fabricate the composites. Mechanical properties such as hardness and tensile strength have been evaluated. A pin‐on‐disc wear test apparatus was used to evaluate the wear rate and coefficient of friction by varying the loads of 20, 30 and 40 N, sliding speeds of 1.5 m/s, 2.5 m/s and 3.5 m/s at a constant sliding distance of 2100 m.

Findings

Mechanical properties of hybrid metal matrix composites (HMMCs) have shown significant improvement. The wear rate and coefficient of friction for alloy and composites decreased with increase in sliding speed and increased with increase in applied load. Temperature rise during wearing process for monolithic alloy was larger than that of HMMCs and Al/9% Al2O3/3% Gr composite showing the minimum temperature rise.The worn surfaces of the composites were investigated using scanning electron microscope.

Practical implications

The paper shows that aluminium composites can improve strength and wear resistance.

Originality/value

HMMCs has proven to be useful in improving the dry sliding wear resistance.

Details

Industrial Lubrication and Tribology, vol. 64 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 July 2021

Navin Kumar, R.S. Walia and Surjit Angra

The aim of the present study is to find the tribological properties of newly developed polyester-based hybrid glass-jute fibre reinforced plastic composites loaded with different…

62

Abstract

Purpose

The aim of the present study is to find the tribological properties of newly developed polyester-based hybrid glass-jute fibre reinforced plastic composites loaded with different weight per cent of hybrid filler particles were investigated under a dry sliding medium from room temperature to 75°C.

Design/methodology/approach

The study was carried out using a pin-on-disc wear test set-up. The design of experiments was carried out in a controlled way using a central composite design based on response surface methodology to observe the effect of various parameters i.e. sliding velocity, sliding distance, the temperature of counterface and different applied load conditions during dry-sliding.

Findings

The maximum wear resistance was found at 9 Wt% loading of filler, 4 ms-1 sliding velocity, 30 N applied load, 54°C temperature of the counterface and 1,100 m sliding distance condition. Optimum values of hybrid filler loading, sliding velocity, applied load, the temperature of the counterface and sliding distance for the minimum coefficient of friction value and minimum friction force are 9 Wt%, 4 ms−1, 30 N, 54° C, 1,100 m and 12 Wt%, 3 ms−1, 20 N, 59°C and 1,100 m, respectively. The worn surface morphology was studied using scanning electron microscope, for wear dominant mechanisms.

Originality/value

The tribological properties of newly developed polyester-based hybrid glass-jute fibre reinforced plastic composites loaded with different weight % of hybrid filler particles, were investigated under dry sliding medium from room temperature to 75°C has not been attempted yet.

Details

World Journal of Engineering, vol. 19 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 November 2022

Sarita Bharti and Senthilvelan Selvaraj

This paper aims to understand the effect of the manufacturing process on the frictional and wear performance of polyamide.

189

Abstract

Purpose

This paper aims to understand the effect of the manufacturing process on the frictional and wear performance of polyamide.

Design/methodology/approach

Pin specimens were manufactured through injection moulding (IM) and selective laser sintering (SLS) manufacturing processes. The friction and wear performance was evaluated using a pin-on-disc configuration under dry and oil-lubricated conditions. The friction coefficient, wear resistance and surface temperature of specimens were measured, and failure morphology analysis was carried out to understand the mechanism.

Findings

SLS material exhibited significantly less friction, wear and surface temperature than IM material under dry conditions. Reduced ductility due to the sintering contributes to reduced friction, wear and heat generation. Under the dry condition, IM material exhibited plastic flow and roll-shaped deformation, whereas SLS material exhibited only local degradation due to its lesser ductility. Lubrication reduced friction and temperature for both SLS and IM materials. The porous nature of the sintered surface absorbed the lubricant and released it while sliding, which is confirmed by the brown-coloured wear track.

Originality/value

The study provides valuable input to the designers on the sliding contact performance of commonly adopted two different manufacturing processes of polymers; IM and SLS manufacturing.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 July 2024

Jinming Zhen, Congcong Zhen, Min Yuan, Yingliang Liu, Li Wang, Lin Yuan, Yuhan Sun, Xinyue Zhang, Xiaoshu Yang and Haojian Huang

With the rapid development of the pipeline transportation and exploitation of mineral resources, it is urgent requirement for the high-performance polymer matrix composites with…

Abstract

Purpose

With the rapid development of the pipeline transportation and exploitation of mineral resources, it is urgent requirement for the high-performance polymer matrix composites with low friction and wear to meet the needs of solid material transportation. This paper aims to prepare high-performance ultrahigh molecular weight polyethylene (UHMWPE) matrix composites and investigate the effect of service condition on frictional behavior for composite.

Design/methodology/approach

In this study, UHMWPE matrix composites with different content of MoS2 were prepared and the tribological performance of the GCr15/composites friction pair in various sliding speeds (0.025–0.125 m/s) under dry friction conditions were studied by ball-on-disk tribology experiments.

Findings

Results show that the frictional behavior was shown to be sensitive to MoS2 concentration and sliding velocity. As the MoS2 content is 2 Wt.%, composites presented the best overall tribological performance. Besides, the friction coefficient fluctuates around 0.21 from 0.025 to 0.125 m/s sliding speed, while the wear rate increases gradually. Scanning electron microscopy images, energy-dispersive spectroscopy and Raman Spectrum analysis present that the main wear mechanisms were abrasive and fatigue wear.

Originality/value

The knowledge obtained herein will facilitate the design of UHMWPE matrix composites with promising self-lubrication performances which used in slag transport engineering field.

Details

Industrial Lubrication and Tribology, vol. 76 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 April 2014

Huseyin Unal, Salih Hakan Yetgin and Fehim Findik

– The purpose of the study was to find the best performance polymer material to be used in railway car bogies.

Abstract

Purpose

The purpose of the study was to find the best performance polymer material to be used in railway car bogies.

Design/methodology/approach

Wear tests and optical and scanning electron microscopy were used.

Findings

The friction coefficients of ultra-high-molecular-weight polyethylene (UHMWPE) and Nylon 6 polymers, as opposed to AISI 4140 steel, reduced with the increment of applied loads. With the increment of sliding speed, the friction coefficient increased in both UHMWPE and Nylon 6 polymers. The specific wear rate of the UHMWPE polymer was determined to be about 10-14 m2/N, whereas the rate of Nylon 6 was determined to be 10-13 m2/N.

Practical implications

The aim of the study was to find the best performance polymer material to be used in railway car bogies.

Originality/value

The friction and wear performance of UHMWPE and Nylon 6 engineering polymers were studied and compared to their AISI 4140 steel counterparts. It is an original work and it is not published in any media.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 May 2021

Sakthi Sadhasivam RM, Ramanathan K., Bhuvaneswari B.V. and Raja R.

The most promising replacements for the industrial applications are particle reinforced metal matrix composites because of their good and combined mechanical properties…

Abstract

Purpose

The most promising replacements for the industrial applications are particle reinforced metal matrix composites because of their good and combined mechanical properties. Currently, the need of matrix materials for industrial applications is widely satisfied by aluminium alloys. The purpose of this paper is to evaluate the tribological behaviour of the zinc oxide (ZnO) particles reinforced AA6061 composites prepared by stir casting route.

Design/methodology/approach

In this study, AA6061 aluminium alloy matrix reinforced with varying weight percentages (3%, 4.5% and 6%) of ZnO particles, including monolithic AA6061 alloy samples, is cast by the most economical fabrication method, called stir casting. The prepared sample was subjected to X-ray photoelectron spectroscopy (XPS) analysis, experimental density measurement by Archimedian principle and theoretical density by rule of mixture and hardness test to investigate mechanical property. The dry sliding wear behaviour of the composites was investigated using pin-on-disc tribometer with various applied loads of 15 and 20 N, with constant sliding velocity and distance. The wear rate, coefficient of friction (COF) and worn surfaces of the composite specimens and their effects were also investigated in this work.

Findings

XPS results confirm the homogeneous distribution of ZnO microparticles in the Al matrix. The Vickers hardness result reveals that higher ZnO reinforced (6%) sample have 34.4% higher values of HV than the monolithic aluminium sample. The sliding wear tests similarly show that increasing the weight percentage of ZnO particles leads to a reduced wear rate and COF of 30.01% and 26.32% lower than unreinforced alloy for 15 N and 36.35% and 25% for 20 N applied load. From the worn surface morphological studies, it was evidently noticed that ZnO particles dispersed throughout the matrix and it had strong bonding between the reinforcement and the matrix, which significantly reduced the plastic deformation of the surfaces.

Originality/value

The uniqueness of this work is to use the reinforcement of ZnO particles with AA6061 matrix and preparing by stir casting route and to study and analyse the physical, hardness and tribological behaviour of the composite materials.

Details

Industrial Lubrication and Tribology, vol. 73 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 July 2021

Zhishuang Wang, Songhua Li, Jian Sun, Junhai Wang, Yonghua Wang, Zhongxian Xia and Chao Wei

The purpose of this study is to investigate the effects of load and rotation speed on dry sliding of silicon nitride, including a series of tribological behaviors (friction…

Abstract

Purpose

The purpose of this study is to investigate the effects of load and rotation speed on dry sliding of silicon nitride, including a series of tribological behaviors (friction coefficient, wear rate, temperature rise, etc.) and wear mechanism. Through the analysis of the above characteristics, the influence law of load and speed on them and the internal relationship between them are determined, and then the best comprehensive performance parameters of silicon nitride full-ceramic spherical plain bearings in dry sliding are predicted, which can provide guidance for the operation condition of silicon nitride full-ceramic spherical plain bearings in dry sliding.

Design/methodology/approach

The experimental study of different loads and rotation speeds under dry friction conditions was carried out by the using ball-disk sliding test method.

Findings

With the increase of load, the friction coefficient of silicon nitride friction pair and the wear rate of silicon nitride ball decrease continuously. With the increase of rotation speed, the friction coefficient of silicon nitride friction pair first increases and then decreases, and the wear of silicon nitride ball first increases and then decreases. With the increase of load and rotation speed, the wear mechanism eventually changes to adhesive wear.

Originality/value

Because of the low timeliness and inefficiency of bearing experiments, this work adopts a simple ball-disk model to comprehensively explore the influence rules of different conditions, which provides a theoretical basis for the subsequent practical application of silicon nitride full-ceramic spherical plain bearings.

Details

Industrial Lubrication and Tribology, vol. 73 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 February 2007

Regalla Srinivasa Prakash, U.R.K. Rao and A. Sethuramaiah

To study the nature of scuffing in boundary lubricated sliding contacts with subsurface plastic deformation, as it occurs in plastic deformation processing.

Abstract

Purpose

To study the nature of scuffing in boundary lubricated sliding contacts with subsurface plastic deformation, as it occurs in plastic deformation processing.

Design/methodology/approach

Low speed oblique plastic impact testing (LOSOPIT) has been conducted on copper specimen with a hard En31 ball in a test rig that has facility to measure the coefficient of friction. Based on the findings of friction coefficient in these experiments, friction power has been estimated and was found to be in the typical range. Scuffing studies were undertaken both by observation of the slid surface of En31 sphere in a ferrographic microscope with camera facility as well as by calculation of the friction power.

Findings

The boundary lubricant was found to have profound role in safeguarding the surface from severe deformation and micro‐cracks. Scanning electron microscope (SEM) examination of the craters produced by LOSOPIT has given evidence that using the boundary lubricant resulted in smooth transfer of shear stress from the sphere to the specimen surface through the boundary lubricant layer. Owing to this, the asperities have been found flattened in a smooth manner instead of metal at the surface being scuffed. A limited amount of reduction was found in the coefficient of friction due to the use of boundary lubricant from that in the dry testing.

Research limitations/implications

The model used to estimate the friction power is predominantly governed by the friction coefficient itself rather than either the normal load or the sliding speed. Friction coefficient itself may be contributed by various mechanisms all of which may not equally contribute to scuffing. Study is underway to carefully glean out those components of friction that exactly result in scuffing, and to use more effective criteria for scuffing.

Practical implications

The knowledge and data developed in the paper give a clear explanation of conditions under which scuffing can take place in sliding contacts operating under boundary regime. The most important applications are metalforming and metal cutting. It is relevant to mechanical engineering machinery in which intense contact pressures are expected.

Originality/value

This paper fills the gap of lack of scuffing studies in plastic deformation processing. All earlier studies focused on elastic conditions prevailing at the contact. Since, industry has been witnessing a need to tackle the severe problems related to formed product quality and certain defects hitherto unexplained, this paper gives a new direction to explain the defects in products from scuffing point of view. In this paper, it has been shown that friction power can be a good criterion to represent scuffing intensity in boundary lubrication.

Details

Industrial Lubrication and Tribology, vol. 59 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 3000