Search results

1 – 10 of over 2000
Article
Publication date: 21 December 2022

Vimal Kumar Deshmukh, Mridul Singh Rajput and H.K. Narang

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on…

Abstract

Purpose

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on as deposited features; and to understand the characteristics of jet electrodeposition deposition defects and its preventive procedures through available research articles.

Design/methodology/approach

A systematic review has been done based on available research articles focused on jet electrodeposition and its characteristics. The review begins with a brief introduction to micro-electrodeposition and high-speed selective jet electrodeposition (HSSJED). The research and developments on how jet electrochemical manufacturing are clustered with conventional micro-electrodeposition and their developments. Furthermore, this study converges on comparative analysis on HSSJED and recent research trends in high-speed jet electrodeposition of metals, their alloys and composites and presents potential perspectives for the future research direction in the final section.

Findings

Edge defect, optimum nozzle height and controlled deposition remain major challenges in electrochemical manufacturing. On-situ deposition can be used as initial structural material for micro and nanoelectronic devices. Integration of ultrasonic, laser and acoustic source to jet electrochemical manufacturing are current trends that are promising enhanced homogeneity, controlled density and porosity with high precision manufacturing.

Originality/value

This paper discusses the key issue associated to high-speed jet electrodeposition process. Emphasis has been given to various electrochemical parameters and their effect on deposition. Pros and cons of variations in electrochemical parameters have been studied by comparing the available reports on experimental investigations. Defects and their preventive measures have also been discussed. This review presented a summary of past achievements and recent advancements in the field of jet electrochemical manufacturing.

Article
Publication date: 15 June 2015

Wen-Juan Zhang, Xue-Hua Ruan, Gao-Hong He, Yong-Liang Ma and Yuan-Fa Liu

The permeate flux in microfiltration (MF) declines sharply with time due to membrane fouling, which seriously restricts its use in industrial applications. The purpose of this…

Abstract

Purpose

The permeate flux in microfiltration (MF) declines sharply with time due to membrane fouling, which seriously restricts its use in industrial applications. The purpose of this paper is to investigate particles deposition in MF processes, and propose a three-dimensional numerical model that focuses on particle-fluid flow and considers both permeable boundary conditions and cake deposition.

Design/methodology/approach

The two-ways coupling model was solved using Euler-Lagrange methods in which the suspended particle was traced by a hard sphere model and the fluid was simulated using large eddy model.

Findings

The numerical results predicted based on this model demonstrated the permeate flux increased as trans-membrane pressure and inlet velocity increased but decreased with an increase in feed concentration.

Research limitations/implications

Good agreement was observed between the values obtained with the model and experimental values from the literature. The error is less than 20 per cent both permeate flux and cake thickness. In addition, a precise visualisation of cake morphology with filtration time was provided.

Originality/value

These analyses allowed for an estimation of the three-dimensional motion of suspended particles in turbulent flow. It saves manpower and financial resources for experiment, which possess important theoretical and industrial significance.

Details

Engineering Computations, vol. 32 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 October 2021

Khalid Abdalla and Hussain Zuhailawati

The purpose of this paper is to study the effect of different concentrations of pretreatment solution of copper acetate (1, 5 and 10 g/L) on the deposition, growth and protection…

Abstract

Purpose

The purpose of this paper is to study the effect of different concentrations of pretreatment solution of copper acetate (1, 5 and 10 g/L) on the deposition, growth and protection ability of zinc phosphate coating.

Design/methodology/approach

Zinc phosphate coatings were deposited on steel surface by immersion method. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were used to study the morphological evolution and chemical analysis of formed coatings. The electrochemical performance of the coatings was evaluated via potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS) and immersion test in an aerated 3.5% NaCl solution.

Findings

The results showed that the activation treatment accelerated the deposition of the phosphate coating and improved its surface coverage. A higher phosphate coating weight (7.35 g/m2) and more compact structure was obtained with pretreatment solution of 1 g/L copper acetate. Electrochemical results revealed that the protection ability of the phosphated substrates was markedly enhanced after the pretreatment, and the best corrosion protection was obtained with a concentration of 1 g/L copper acetate solution. The corrosion current density of phosphated substrate was reduced by 64.9% after activation treatment with 1 g/L copper acetate solution.

Originality/value

In this investigation, dense, stable and compact zinc phosphate layers with improved corrosion resistance were formed on a carbon steel surface after activation pretreatment with copper acetate solution prior to a phosphating step.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 August 2019

Zhihua Tao, Guanting Liu, Yuanxun Li and Hua Su

The adsorption and acceleration behavior of 3-mercaptopropyl sulfonate (MPS) were investigated by electrochemical tests for microvia filling by copper electroplating.

Abstract

Purpose

The adsorption and acceleration behavior of 3-mercaptopropyl sulfonate (MPS) were investigated by electrochemical tests for microvia filling by copper electroplating.

Design/methodology/approach

The synergistic effects of one suppressor of propylene oxide ethylene oxide propylene oxide named PEP and MPS as the accelerator during copper electroplating were also investigated by electrochemical methods such as electrochemical impedance spectroscopy cyclic voltammetric stripping (CVS) and Galvanostatic measurements (GMs).

Findings

The research results suggest that the adsorption of MPS onto the Cu-RDE metal surface was a spontaneous process and the adsorbing of MPS on cathode was proposed to physical-chemistry adsorption in the plating formula. There was no potential difference (i.e. ?? = 0) of GMs until MPS was injected into the plating solution suggest that copper deposition is not diffusion-controlled in the presence of PEP–Cl–JGB.

Originality/value

A new composition of plating bath was found to be effective to perform bottom-up copper filling of microvias in the fabrication of PCB in electronic industries. The adsorption of MPS into the Cu-RDE metal surface was a spontaneous process and the adsorbing of MPS on cathode was studied by EIS and the results proposed to physical-chemistry adsorption in the plating formula. An optimal plating solution composed of CuSO4, H2SO4, chloride ions, PEP, MPS and JGB was obtained, and the microvia could be fully filled using the plating formula.

Article
Publication date: 23 August 2019

Thomas Rowan and Mohammed Seaid

The purpose of this paper is to present a new numerical model for shallow water flows over heterogeneous sedimentary layers. It is already several years since the single-layered…

Abstract

Purpose

The purpose of this paper is to present a new numerical model for shallow water flows over heterogeneous sedimentary layers. It is already several years since the single-layered models have been used to model shallow water flows over erodible beds. Although such models present a real opportunity for shallow water flows over movable beds, this paper is the first to propose a multilayered solver for this class of flow problems.

Design/methodology/approach

Multilayered beds formed with different erodible soils are considered in this study. The governing equations consist of the well-established shallow water equations for the flow, a transport equation for the suspended sediments, an Exner-type equation for the bed load and a set of empirical equations for erosion and deposition terms. For the numerical solution of the coupled system, the authors consider a non-homogeneous Riemann solver equipped with interface-tracking tools to resolve discontinuous soil properties in the multilayered bed. The solver consists of a predictor stage for the discretization of gradient terms and a corrector stage for the treatment of source terms.

Findings

This paper reveals that modeling shallow water flows over multilayered sedimentary topography can be achieved by using a coupled system of partial differential equations governing sediment transport. The obtained results demonstrate that the proposed numerical model preserves the conservation property, and it provides accurate results, avoiding numerical oscillations and numerical dissipation in the approximated solutions.

Originality/value

A novel implementation of sediment handling is presented where both averaged and separate values for sediment species are used to ensure speed and precision in the simulations.

Details

Engineering Computations, vol. 37 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 3
Type: Research Article
ISSN: 0003-5599

Abstract

Details

Microelectronics International, vol. 28 no. 2
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 19 April 2023

Shweta  , Sunil Jadav and Rohit Tripathi

Sensing technology has been extensively researched and used due to its applications in industrial production and daily life. Due to inherent limitations of conventional…

Abstract

Purpose

Sensing technology has been extensively researched and used due to its applications in industrial production and daily life. Due to inherent limitations of conventional silicon-based technology, researchers are now-a-days paying more attention to flexible electronics to design low-cost, high-sensitivity devices. This observational and analytical study aims to emphasis on carbon monoxide gas sensor. This review also focuses the challenges faced by flexible devices, offers the most recent research on paper-based gas sensors and pays special focus on various sensing materials and fabrication techniques.

Design/methodology/approach

To get the better insight into opportunities for future improvement, a number of research papers based on sensors were studied and realized the need to design carbon monoxide gas sensor. A number of parameters were then gone through to decide the flexibility parameter to be considered for design purposes. This review also focuses on the challenges faced by flexible devices and how they can be overcome.

Findings

It has been shown that carbon monoxide gas, being most contaminated gas, needs to be fabricated to sense low concentration at room temperature, considering flexibility as an important parameter. Regarding this parameter, some tests must be done to test whether the structure sustains or degrades after bending. The parameters required to perform bending are also described.

Originality/value

Due to inherent limitations of conventional silicon-based technology, now-a-days attention is paid towards flexible electronics to design low-cost, high-sensitivity devices. A number of research articles are provided in the literature concerning gas sensing for different applications using several sensing principles. This study aims to provide a comprehensive overview of recent developments in carbon monoxide gas sensors along with the design possibilities for flexible paper-based gas sensors. All the aspects have been taken into consideration for the fabrication, starting with paper characterization techniques, various sensing materials, manufacturing methodologies, challenges in the fabrication of flexible devices and effects of bending and humidity on the sensing performance.

Details

Sensor Review, vol. 43 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 November 2021

Nigel Craig, Nick Pilcher, Alan M. Forster and Craig Kennedy

The spirits industry is a major economic contributor worldwide, often requiring years of maturation in barrels that is associated with significant release of ethanol into the…

Abstract

Purpose

The spirits industry is a major economic contributor worldwide, often requiring years of maturation in barrels that is associated with significant release of ethanol into the surrounding environment. This provides carbon nutrition for colonisation of black fungal growths, one type being Baudoinia compniacensis, or Whisky Black. Although growth is localised in production areas, numerous sites exist globally, and this paper's purpose is to investigate the extent and implications of colonisation.

Design/methodology/approach

The paper presents and discusses the results of a visual survey of the area surrounding a site where whisky is maturing in nearby bonded warehouses. The evaluation considers radial zoning distance from the ethanol source and material substrate types and surface textures. Classical key stages of Building Pathology, namely manifestation, diagnosis, prognosis and therapy, are considered.

Findings

Key findings are that the colonisation of the fungus is non-uniform and dependent on the substrate building material. Additionally, rougher-textured building materials displayed heavier levels of fungal manifestation than smooth materials. Aspects such as distance, wind direction and moisture are considered relative to the extent and level of fungal growth.

Originality/value

This investigation provides the first assessment of the extent and nature of the fungal growth in properties built in surrounding areas to bonded warehouses. Such information can facilitate open dialogue between stakeholders that recognise the aspirations of values of corporate social responsibility, whilst balancing the economic importance of distilling with recognition of the fungus's impact on property values and appropriate recurring remedial treatments.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 25 September 2023

Jiaxin Li, Zhiyuan Zhu, Zhiwei Li, Yonggang Zhao, Yun Lei, Xuping Su, Changjun Wu and Haoping Peng

Gallic acid is a substance that is widely found in nature. Initially, it was only used as a corrosion inhibitor to retard the rate of corrosion of metals. In recent years, with…

Abstract

Purpose

Gallic acid is a substance that is widely found in nature. Initially, it was only used as a corrosion inhibitor to retard the rate of corrosion of metals. In recent years, with intensive research by scholars, the modification of coatings containing gallic acid has become a hot topic in the field of metal protection. This study aims to summarize the various preparation methods of gallic acid and its research progress in corrosion inhibitors and coatings, as well as related studies using quantum chemical methods to assess the predicted corrosion inhibition effects and to systematically describe the prospects and current status of gallic acid applications in the field of metal corrosion inhibition and protection.

Design/methodology/approach

First, the various methods of preparation of gallic acid in industry are understood. Second, the corrosion inhibition principles and research progress of gallic acid as a metal corrosion inhibitor are presented. Then, the corrosion inhibition principles and research progress of gallic acid involved in the synthesis and modification of various rust conversion coatings, nano-coatings and organic resin coatings are described. After that, studies related to the evaluation and prediction of gallic acid corrosion inhibition on metals by quantum chemical methods are presented. Finally, new research ideas on gallic acid in the field of corrosion inhibition and protection of metals are summarized.

Findings

Gallic acid can be used as a corrosion inhibitor or coating in metal protection.

Research limitations/implications

There is a lack of research on the synergistic improvement of gallic acid and other substances.

Practical implications

The specific application of gallic acid in the field of metal protection was summarized, and the future research focus was put forward.

Originality/value

To the best of the authors’ knowledge, this paper systematically expounds on the research progress of gallic acid in the field of metal protection for the first time and provides new ideas and directions for future research.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 2000