Search results

1 – 10 of 859
To view the access options for this content please click here
Article
Publication date: 26 July 2013

Olga Ivanova, Christopher Williams and Thomas Campbell

This paper aims to provide a review of available published literature in which nanostructures are incorporated into AM printing media as an attempt to improve the…

Downloads
11210

Abstract

Purpose

This paper aims to provide a review of available published literature in which nanostructures are incorporated into AM printing media as an attempt to improve the properties of the final printed part. The purpose of this article is to summarize the research done to date, to highlight successes in the field, and to identify opportunities that the union of AM and nanotechnology could bring to science and technology.

Design/methodology/approach

Research in which metal, ceramic, and carbon nanomaterials have been incorporated into AM technologies such as stereolithography, laser sintering, fused filament fabrication, and three‐dimensional printing is presented. The results of the addition of nanomaterials into these AM processes are reviewed.

Findings

The addition of nanostructured materials into the printing media for additive manufacturing affects significantly the properties of the final parts. Challenges in the application of nanomaterials to additive manufacturing are nevertheless numerous.

Research limitations/implications

Each of the AM methods described in this review has its own inherent limitations when nanoparticles are applied with the respective printing media. Overcoming these design boundaries may require the development of new instrumentation for successful AM with nanomaterials.

Originality/value

This review shows that there are many opportunities in the marriage of AM and nanotechnology. Promising results have been published in the application of nanomaterials and AM, yet significant work remains to fully harness their inherent potential. This paper serves the purpose to researchers to explore new nanomaterials‐based composites for additive manufacturing.

Details

Rapid Prototyping Journal, vol. 19 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 30 June 2021

Tasawar Hayat, Khursheed Muhammad and Ahmed Alsaedi

The purpose of this study is to analyze hybrid nanofluid (MWCNTs+Ag+Kerosene oil) over a stretched cylinder. Flow analysis is carried out in presence of stagnation-point…

Abstract

Purpose

The purpose of this study is to analyze hybrid nanofluid (MWCNTs+Ag+Kerosene oil) over a stretched cylinder. Flow analysis is carried out in presence of stagnation-point. Features of heat transport are examined via melting conditions.

Design/methodology/approach

Governed expression (partial differential equations) for flow and heat transfer are transmitted into ordinary differential equations (ODEs) via applying adequate transformations. For solutions development shooting method (bvp4c) is used on these non-linear coupled ODEs.

Findings

Comparative observation among hybrid nanofluid (MWCNTs+Ag+Kerosene oil), basefluid (kerosene oil) and nanofluid (MWCNTs+Kerosene oil) are performed. Influences of physical parameters on heat transfer rate, velocity, skinfriction coefficient and temperature are visualized graphically. Higher values nanoparticle volume fractions, curvature parameter, melting parameter and velocity ratio parameter lead to intensification in the velocity profile. The temperature of the fluid reduces with higher values nanoparticle volume fractions, curvature parameter and melting parameter. The surface friction coefficient is minimized via a higher melting parameter and velocity ratio parameter. Heat transmission rate intensifies with velocity ratio parameter, nanoparticle volume friction and curvature parameter while it reduces gradually with larger melting parameter. During comparative study performance of hybrid nanomaterial (MWCNTs+Ag+Kerosene oil) is outstanding and is proceeded by nanomaterial (MWCNTs+ Kerosene oil) and basefluid (kerosene oil).

Originality/value

In the presented study authors have analyzed the flow of hybrid nanomaterial (MWCNTs+Ag+Kerosene oil) by a stretching cylinder. The further cylinder is subjected to stagnation point and melting condition. The authors believe that all the consequences of the presented study and numerical technique (bvp4c) are original and not published before.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 14 January 2014

Robert Bogue

– This paper aims to provide a detailed review of gas sensor research which exploits the properties of nanomaterials and nanostructures.

Downloads
1809

Abstract

Purpose

This paper aims to provide a detailed review of gas sensor research which exploits the properties of nanomaterials and nanostructures.

Design/methodology/approach

Following an introduction, this paper discusses developments in gas sensors based on carbon nanotubes, titanium dioxide nanotubes, graphene, nanocrystalline diamond and a range of metal oxide nanomaterials. It concludes with a discussion of this research and its commercial potential and a list of references to the research considered in the main text.

Findings

Gas sensors based on a multitude of nanomaterials are the subject of a global research effort which has generated an extensive literature. Prototype devices have been developed which respond to numerous important gases at concentrations which correspond well with industrial requirements. Other critical performance characteristics have been studied extensively and the results suggest commercial prospects for these technologies.

Originality/value

This paper provides details of the highly topical field of nanomaterial-based gas sensor research.

Details

Sensor Review, vol. 34 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 21 September 2015

Robert Bogue

– This paper aims to provide details of recently reported work on the use of nanomaterials in sensors for physical variables.

Abstract

Purpose

This paper aims to provide details of recently reported work on the use of nanomaterials in sensors for physical variables.

Design/methodology/approach

Following a short introduction, this paper first discusses research involving the use of a range of nanomaterials for strain sensing. It then considers the applications of these materials to sensors for pressure, force, touch and allied variables. It concludes with a brief discussion and 33 references.

Findings

This paper shows that nanomaterials such as carbon nanotubes, graphene, metallic nanoparticles and nanowires are being studied extensively in the physical-sensing context. All manner of sensors have been developed, based on a diversity of principles and technologies, and many offer excellent performance and unique capabilities, making them particularly well-suited to emerging applications such as wearable sensing devices.

Originality/value

This paper provides a detailed and timely review of the rapidly growing body of research into the use of nanomaterials for sensing physical quantities.

Details

Sensor Review, vol. 35 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 5 October 2015

Michael Trachtengerts, Adilbek Erkimbaev, Vladimir Zitserman and Georgii Kobzev

The purpose of this paper is to reveal main advantages of digital libraries in comparison with technology of common database for data-oriented fields of modern science. As…

Downloads
731

Abstract

Purpose

The purpose of this paper is to reveal main advantages of digital libraries in comparison with technology of common database for data-oriented fields of modern science. As an example, the subject domain “nanomaterials and nanotechnologies” with new features due to evolution of concepts and objects is presented.

Design/methodology/approach

An analysis of the information system ABCD as a basis for science-oriented digital library was fulfilled. Also, a survey of peculiarities of data in fast developing fields of science was prepared.

Findings

The results of this paper showed that functional capacities of ABCD satisfy requirements for complex collections and archives of scientific documents. Based on the ABCD tools and this concept, the digital library for storage and systematization of data and documents on nanomaterials and nanotechnologies for the power engineering was constructed. The library combines opportunities of bibliographic, full text and factual information systems.

Originality/value

This paper gives the foundation for creation of a library that combines services of bibliographic, full text and factual (numerical) information systems. Some analyses of ABCD tools were made before elsewhere, but they did not point on data peculiarities of complexly organized domains: semi-structured data, multitude formats (text, image and tables), interconnection of content with external sources located on other servers or in the Web.

Details

The Electronic Library, vol. 33 no. 5
Type: Research Article
ISSN: 0264-0473

Keywords

Content available
Article
Publication date: 1 April 2004

Downloads
106

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 51 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 57 no. 6
Type: Research Article
ISSN: 0003-5599

To view the access options for this content please click here
Article
Publication date: 14 June 2013

Robert Bogue

This paper aims to describe the nanosensor research reported at the “Nanomaterials: Applications & Properties 2012” conference, held in the Ukraine in September 2012.

Abstract

Purpose

This paper aims to describe the nanosensor research reported at the “Nanomaterials: Applications & Properties 2012” conference, held in the Ukraine in September 2012.

Design/methodology/approach

Following a short overview of the event, this paper describes the nanosensor research reported at the conference, arranged according to the variables involved, i.e. chemical sensing, gas sensors and physical sensing. Brief consideration is also given to developments in power sources.

Findings

This shows that, although nanosensors were not a major theme at the event, several innovative developments for sensing a range of molecular and physical variables were reported.

Originality/value

This paper provides details of the nanosensor research reported at “Nanomaterials: Applications & Properties 2012”.

Details

Sensor Review, vol. 33 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 18 January 2016

Robert Bogue

This paper aims to illustrate how sensors can be fabricated by combining nanomaterials with micro-electromechanical system (MEMS) technology and to give examples of…

Abstract

Purpose

This paper aims to illustrate how sensors can be fabricated by combining nanomaterials with micro-electromechanical system (MEMS) technology and to give examples of recently developed devices arising from this approach.

Design/methodology/approach

Following a short introduction, this paper first identifies the benefits of MEMS technology. It then discusses the techniques for integrating carbon nanotubes with MEMS and provides examples of physical and molecular sensors produced by these methods. Combining other gas-responsive nanomaterials with MEMS is then considered and finally techniques for producing graphene on silicon devices are discussed. Brief concluding comments are drawn.

Findings

This shows that many physical and molecular sensors have been developed by combining nanomaterials with MEMS technology. These have been fabricated by a diverse range of techniques which are often complex and multi-stage, but significant progress has been made and some are compatible with standard CMOS processes, yielding fully integrated nanosensors.

Originality/value

This provides an insight into how two key technologies are being combined to yield families of advanced sensors.

Details

Sensor Review, vol. 36 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 18 March 2021

Zahra Ebrahimpour, Mohsen Sheikholeslami, Seyyed Ali Farshad and Ahmad Shafee

This paper aims to model solar unit equipped with mirrors with numerical simulation. To augment the efficiency of system, absorber pipe was equipped with fins and…

Abstract

Purpose

This paper aims to model solar unit equipped with mirrors with numerical simulation. To augment the efficiency of system, absorber pipe was equipped with fins and nanomaterial was used as carrier fluid. Existence of secondary reflector results in better optical efficiency.

Design/methodology/approach

Finite volume approach is used for modeling which is done in two steps. The first one is done to achieve the heat flux distribution and second step to model turbulent flow inside the pipe. Verification has been presented for calculation of important functions (f and Nu). Outputs reveal the impacts of fin height (HF), number of fin (NF), inlet temperature (Tin) and velocity on irreversibility, thermal treatment.

Findings

Surface temperature decreases by 0.498, 0.07 and 0.017% with intensify of Re, HF and NF, respectively, when other factors were minimum. With augment of Tin, wall temperature increases about 9.87%. Given NF = 8, HF = 3 mmm, growth of Re makes Darcy factor to decrease about 28.28%, but it augments the Nu by 2.63%. Nu augments with rise of NF and HF about 2.63 and 7.66%. Irreversibility reduces about 29.5 and 11.65% with augment of NF and HF, respectively.

Originality/value

Numerical simulations for solar unit equipped with mirrors were reported in this modeling. To augment the efficiency of system, absorber pipe was equipped with fins and nanomaterial was used as carrier fluid. Existence of secondary reflector results in better optical efficiency. Finite volume approach is used for modeling which is done in two steps. The first one is done to achieve the heat flux distribution and second step to model turbulent flow inside the pipe. Verification has been presented for calculation of important functions (f and Nu). Outputs reveal the impacts of fin height (HF), number of fin (NF), inlet temperature (Tin) and velocity on irreversibility, thermal treatment.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 859