Search results

1 – 10 of 22
Article
Publication date: 17 April 2023

Uchenna Luvia Ezeamaku, Innocent Eze, Nkiru Odimegwu, Angela Nwakaudu, Amarachukwu Okafor, Okechukwu Dominic Onukwuli and Ikechukwu Abuchi Nnanwube

The purpose of this study is to investigate starch mucor (SM) in potassium iodide (KI) as corrosion inhibitor of aluminium in hydrochloric acid (HCl) medium.

Abstract

Purpose

The purpose of this study is to investigate starch mucor (SM) in potassium iodide (KI) as corrosion inhibitor of aluminium in hydrochloric acid (HCl) medium.

Design/methodology/approach

The SM in KI was characterized by gravimetric, scanning electron microscopy, electrochemical impedance spectroscopy measurements, potentiodynamic polarization and gas chromatography-mass spectrometer techniques. The inhibition efficiency was optimized using response surface methodology.

Findings

The result revealed that the inhibitor inhibited corrosion at a low concentration with the rate of inhibition increasing as the concentration of the inhibitor increased. The inhibition efficiency increases as the temperature was increased with slight incorporation of the inhibitor (SM in KI). This indicates that the corrosion control is both inhibitor (SM in KI) and temperature dependent.

Originality/value

The research results can provide the basis for using SM in KI as corrosion inhibitor of aluminium in HCL medium. Mixed-type inhibitor nature of SM was proved by cathodic and anodic nature of the polarization curves.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 August 2023

Chigoziri N. Njoku, Temple Uzoma Maduoma, Wilfred Emori, Rita Emmanuel Odey, Beshel M. Unimke, Emmanuel Yakubu, Cyril C. Anorondu, Daniel I. Udunwa, Onyinyechi C. Njoku and Kechinyere B. Oyoh

Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to…

Abstract

Purpose

Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to protect metals from deterioration in corrosive environments. Moreover, the toxic nature, non-biodegradability and price of most conventional corrosion inhibitors have encouraged the application of greener and more sustainable options, with natural and synthetic drugs being major actors. Hence, this paper aims to stress the capability of natural and synthetic drugs as manageable and sustainable, environmentally friendly solutions to the problem of metal corrosion.

Design/methodology/approach

In this review, the recent developments in the use of natural and synthetic drugs as corrosion inhibitors are explored in detail to highlight the key advancements and drawbacks towards the advantageous utilization of drugs as corrosion inhibitors.

Findings

Corrosion is a critical issue in numerous modern applications, and conventional strategies of corrosion inhibition include the use of toxic and environmentally harmful chemicals. As greener alternatives, natural compounds like plant extracts, essential oils and biopolymers, as well as synthetic drugs, are highlighted in this review. In addition, the advantages and disadvantages of these compounds, as well as their effectiveness in preventing corrosion, are discussed in the review.

Originality/value

This survey stresses on the most recent abilities of natural and synthetic drugs as viable and sustainable, environmentally friendly solutions to the problem of metal corrosion, thus expanding the general knowledge of green corrosion inhibitors.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 April 2024

Hang Jia, Zhiming Gao, Shixiong Wu, Jia Liang Liu and Wenbin Hu

This study aims to investigate the corrosion inhibitor effect of migrating corrosion inhibitor (MCI) on Q235 steel in high alkaline environment under cathodic polarization.

Abstract

Purpose

This study aims to investigate the corrosion inhibitor effect of migrating corrosion inhibitor (MCI) on Q235 steel in high alkaline environment under cathodic polarization.

Design/methodology/approach

This study investigated the electrochemical characteristics of Q235 steel with and without MCI by polarization curve and electrochemical impedance spectroscopy. Besides, the surface composition of Q235 steel under different environments was analyzed by X-ray photoelectron spectroscopy. In addition, the migration characteristic of MCI and the adsorption behavior of MCI under cathodic polarization were studied using Raman spectroscopy.

Findings

Diethanolamine (DEA) and N, N-dimethylethanolamine (DMEA) can inhibit the increase of Fe(II) in the oxide film of Q235 steel under cathodic polarization. The adsorption stability of DMEA film was higher under cathodic polarization potential, showing a higher corrosion inhibition ability. The corrosion inhibition mechanism of DEA and DMEA under cathodic polarization potential was proposed.

Originality/value

The MCI has a broad application prospect in the repair of damaged reinforced concrete due to its unique migratory characteristics. The interaction between MCIs, rebar and concrete with different compositions has been studied, but the passivation behavior of the steel interface in the presence of both the migrating electric field and corrosion inhibitors has been neglected. And it was investigated in this paper.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 December 2023

Yajun Chen, Zehuan Sui and Juan Du

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain…

Abstract

Purpose

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain literature review supports and development direction suggestions for future research on intelligent self-healing coatings in aviation.

Design/methodology/approach

This mini-review uses a systematic literature review process to provide a comprehensive and up-to-date review of intelligent self-healing anti-corrosion coatings that have been researched and applied in the field of aviation in recent years. In total, 64 articles published in journals in this field in the last few years were analysed in this paper.

Findings

The authors conclude that the incorporation of multiple external stimulus-response mechanisms makes the coatings smarter in addition to their original self-healing corrosion protection function. In the future, further research is still needed in the research and development of new coating materials, the synergistic release of multiple self-healing mechanisms, coating preparation technology and corrosion monitoring technology.

Originality/value

To the best of the authors’ knowledge, this is one of the few systematic literature reviews on intelligent self-healing anti-corrosion coatings in aviation. The authors provide a comprehensive overview of the topical issues of such coatings and present their views and opinions by discussing the opportunities and challenges that self-healing coatings will face in future development.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 24 April 2024

Vahid Ahmadi, Seyed Mohammad Ali Hosseini, Effat Jamalizadeh and Razie Naghizade

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on…

Abstract

Purpose

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on 7075 aluminum alloy in 3.5% NaCl solution.

Design/methodology/approach

Aluminum alloys were dipped into ceria sol and ceria sol modified by ZnO nanoparticles separately and removed after 10 min from the solutions and dried at 110°C for 30 min and heated at 500 °C for 30 min to form the coatings. The coatings have been characterized by using field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The EIS tests were performed in a corrosive solution of 3.5% NaCl.

Findings

The results showed that the coating of ceria sol modified by ZnO nanoparticles has higher corrosion resistance than the ceria sol coating and the bare sample. Also, the best efficiency is related to aluminum sample immersion after 1 h in NaCl corrosive solution for coating modified by ZnO nanoparticles.

Originality/value

In this research, the modification of ceria sol coating by ZnO nanoparticles had an effect on improving the corrosion behavior of aluminum alloy. It is also understood that modification of coatings is an effective parameter on corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 23 June 2023

Wilfred Emori, Paul C. Okonkwo, Hitler Louis, Ling Liu, Ernest C. Agwamba, Tomsmith Unimuke, Peter Okafor, Atowon D. Atowon, Anthony Ikechukwu Obike and ChunRu Cheng

Owing to the toxicity, biodegradability, and cost of most corrosion inhibitors, research attention is now focused on the development of environmentally benign, biodegradable…

Abstract

Purpose

Owing to the toxicity, biodegradability, and cost of most corrosion inhibitors, research attention is now focused on the development of environmentally benign, biodegradable, cheap, and efficient options. In consideration of these facts, chrysin, a phytocompound of Populus tomentosa (Chinese white poplar) has been isolated and investigated for its anticorrosion abilities on carbon steel in a mixed acid and chloride system. This highlights the main purpose of the study.

Design/methodology/approach

Chrysin was isolated from Populus tomentosa using column chromatography and characterized using Fourier Transform Infrared Spectroscopy and Nuclear Magnetic Resonance Spectroscopy. The investigations are outlined based on theory (Fukui indices, condensed density functional theory and molecular dynamic simulation) and experiments (electrochemical, gravimetry and surface morphology examinations).

Findings

Theoretical evaluations permitted the description of the adsorption characteristics, and molecular interactions and orientations of chrysin on Fe substrate. The interaction energy for protonated and neutral chrysin on Fe (110) were −149.10 kcal/mol and −143.28 kcal/mol, respectively. Moreover, experimental investigations showed that chrysin is a potent mixed-type corrosion inhibitor for steel, whose effectiveness depends on its surrounding temperature and concentration. The optimum inhibition efficiency of 78.7% after 24 h for 1 g/L chrysin at 298 K indicates that the performance of chrysin, as a pure compound, compares favorably with other phytocompounds and plant extracts investigated under similar conditions. However, the inhibition efficiency decreased to 62.5% and 51.8% at 318 K after 48 h and 72 h, respectively.

Originality/value

The novelty of this study relies on the usage of a pure compound in corrosion suppression investigation, thus eliminating the unknown influences obtainable by the presence of multi-phytocompounds in plant extracts, thereby advancing the commercialization of bio-based corrosion inhibitors.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 April 2024

Yaqi Diao, Jihui Wang, Renhong Song, Xue Fei, Zhichang Xue and Wenbin Hu

The purpose of this paper is to prepare a multifunctional nanocomposite that is slow-release and resistant to seawater corrosion and biofouling corrosion and to explore the…

Abstract

Purpose

The purpose of this paper is to prepare a multifunctional nanocomposite that is slow-release and resistant to seawater corrosion and biofouling corrosion and to explore the synergistic effect between the two corrosion inhibitors.

Design/methodology/approach

The morphology, structure and release properties of CAP@HNTs, BTA@HNTs and CAP/BTA@HNTs were investigated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, specific surface area analysis and UV spectrophotometry. The corrosion resistance and antimicrobial properties were investigated by electrochemical measurements and bioinhibition rate tests, and the synergistic effect between the two corrosion inhibitors was explored by X-ray photoelectron spectroscopy.

Findings

The CAP/BTA@HNTs are responsive to acidic environments and have significantly improved antibacterial and corrosion resistance compared with CAP@HNTs and BTA@HNTs. CAP and BTA have a positive synergistic effect on anticorrosion and antifouling.

Originality/value

Two types of inhibitors, anticorrosion and antifouling, were loaded into the same nanocontainer to prepare a slow-releasable and multifunctional nanocomposite with higher resistance to seawater corrosion and biocorrosion and to explore the synergistic effect of CAP and BTA on corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 May 2024

Suyun Liu, Hu Liu, Ningning Shao, Zhijun Dong, Rui Liu, Li Liu and Fuhui Wang

Polyaniline (PANI) has garnered attention for its potential applications in anticorrosion fields because of its unique properties. Satisfactory outcomes have been achieved when…

Abstract

Purpose

Polyaniline (PANI) has garnered attention for its potential applications in anticorrosion fields because of its unique properties. Satisfactory outcomes have been achieved when using PANI as a functional filler in organic coatings. More recently, research has extensively explored PANI-based organic coatings with self-healing properties. The purpose of this paper is to provide a summary of the active agents, methods and mechanisms involved in the self-healing of organic coatings.

Design/methodology/approach

This study uses specific doped acids and metal corrosion inhibitors as active and self-healing agents to modify PANI using the methods of oxidation polymerization, template synthesis, nanosheet carrier and nanocontainer loading methods. The anticorrosion performance of the coatings is evaluated using EIS, LEIS and salt spray tests.

Findings

Specific doped acids and metal corrosion inhibitors are used as active agents to modify PANI and confer self-healing properties to the coatings. The coatings’ active protection mechanism encompasses PANI’s own passivation ability, the adsorption of active agents and the creation of insoluble compounds or complexes.

Originality/value

This paper summarizes the active agents used to modify PANI, the procedures used for modification and the self-healing mechanism of the composite coatings. It also proposes future directions for developing PANI organic coatings with self-healing capabilities. The summaries and proposals presented may facilitate large-scale production of the PANI organic coatings, which exhibit outstanding anticorrosion competence and self-healing properties.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 March 2023

Walid E. Elgammal, Essam M. Eliwa, Hosni A. Goomaa, Medhat E. Owda and H. Abd El-Wahab

This paper aims to focus on the synthesis of the macrocyclic complexes (Cu and Zn) and their applications as anticorrosive materials in epoxy paint formulation for surface coating…

Abstract

Purpose

This paper aims to focus on the synthesis of the macrocyclic complexes (Cu and Zn) and their applications as anticorrosive materials in epoxy paint formulation for surface coating application.

Design/methodology/approach

A selected macrocyclic Cu(II) and Zn(II) complexes were prepared via template synthesis and characterized using Fourier transform infrared, thermal gravimetric analysis, scanning electron microscope, flexibility, hardness and adhesion of coating films prepared using epoxy paint.

Findings

The corrosion resistance of the epoxy-painted films was improved due to the incorporation of the Zn and Cu complexes into the formulation.

Originality/value

It was found that the metal complex-based formulation with Cu(II) and Zn(II) had outperformed the sample blank.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 July 2023

Reza Amini and Pooneh Kardar

This paper aims to achieve an anti-corrosive coating via uniform dispersion of nanoclay particles (montmorillonite) and polypyrrole (PPy) as a conductive polymer as well as their…

Abstract

Purpose

This paper aims to achieve an anti-corrosive coating via uniform dispersion of nanoclay particles (montmorillonite) and polypyrrole (PPy) as a conductive polymer as well as their effects on the anti-corrosion features in the presence of the eco-friendly ionic liquids (ILs).

Design/methodology/approach

In this research, PPy with different forms of nanoclay were used. Moreover, ILs additive is used to enhance the better dispersion process of clay and PPy nanoparticles in the resin.

Findings

As a result, the IL additive in the formulation of nano-composite coatings greatly improves the dispersion process of clay and PPy nanoparticles in the resin. Due to its high compatibility with polyurethane resin and clay and PPy nanoparticles, this additive contains a high dispersing power to disperse the investigated nanoparticles in the resin matrix.

Research limitations/implications

High polarity of ILs as well as abilities to dissolve both mineral and organic materials, they can provide the better chemical processes compared to common solvents.

Practical implications

IL abilities have not been discovered to a large extent such as catalysts and detectors.

Social implications

ILs have been emerging as promising green solvents to replace conventional solvents in recent years. They possess unique properties such as nonvolatility, low toxicity, ease of handling, nonflammability and high ionic conductivity. Thus, they have received much attention as green media for various chemistry processes.

Originality/value

The simultaneous existence of clay, PPy and IL additive in the nano-composite coating formulation is responsible for the high corrosion resistance of the coating.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 22