Search results

1 – 8 of 8
Article
Publication date: 10 November 2022

Md. Raijul Islam, Ayub Nabi Nabi Khan, Rois Uddin Mahmud, Shahin Mohammad Nasimul Haque and Md. Mohibul Islam Khan

This paper aims to evaluate the effects of banana (Musa) peel and guava (Psidium guajava) leaves extract as mordants on jute–cotton union fabrics dyed with onion skin extract as a…

Abstract

Purpose

This paper aims to evaluate the effects of banana (Musa) peel and guava (Psidium guajava) leaves extract as mordants on jute–cotton union fabrics dyed with onion skin extract as a natural dye.

Design/methodology/approach

The dye was extracted from the outer skin of onions by boiling in water and later concentrated. The bio-mordants were prepared by maceration using methanol and ethanol. The fabrics were pre-mordanted, simultaneously mordanted and post-mordanted with various concentrations according to the weight of the fabric. The dyed and mordanted fabrics were later subjected to measurement of color coordinates, color strength and colorfastness to the washing test. Furthermore, the dyed samples were characterized by Fourier transform infrared, and different chemical bonds were analyzed by X-ray photoelectron spectroscopy analysis.

Findings

Significant improvement was obtained in colorfastness and color strength values in various instances using banana peel and guava leaves as bio mordants. Post-mordanted with banana peel provided the best results for wash fastness. Better color strength was achieved by fabric post-mordanted with guava leave extracts.

Originality/value

Sustainable dyeing methods of natural dyes using banana peel and guava leaves as bio mordants were explored on jute–cotton union fabrics. Improvement in colorfastness and color strength for various instances was observed. Thus, this paper provides a promising alternative to metallic salt mordants.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 March 2024

Diana Irinel Baila, Filippo Sanfilippo, Tom Savu, Filip Górski, Ionut Cristian Radu, Catalin Zaharia, Constantina Anca Parau, Martin Zelenay and Pacurar Razvan

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM…

Abstract

Purpose

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM) processes, have gained significant attention in recent years. Their accuracy, multi-material capability and application in novel fields, such as implantology, biomedical, aviation and energy industries, underscore the growing importance of these materials. The purpose of this study is oriented toward the application of new advanced materials in stent manufacturing realized by 3D printing technologies.

Design/methodology/approach

The methodology for designing personalized medical devices, implies computed tomography (CT) or magnetic resonance (MR) techniques. By realizing segmentation, reverse engineering and deriving a 3D model of a blood vessel, a subsequent stent design is achieved. The tessellation process and 3D printing methods can then be used to produce these parts. In this context, the SLA technology, in close correlation with the new types of developed resins, has brought significant evolution, as demonstrated through the analyses that are realized in the research presented in this study. This study undertakes a comprehensive approach, establishing experimentally the characteristics of two new types of photopolymerizable resins (both undoped and doped with micro-ceramic powders), remarking their great accuracy for 3D modeling in die-casting techniques, especially in the production process of customized stents.

Findings

A series of analyses were conducted, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, mapping and roughness tests. Additionally, the structural integrity and molecular bonding of these resins were assessed by Fourier-transform infrared spectroscopy–attenuated total reflectance analysis. The research also explored the possibilities of using metallic alloys for producing the stents, comparing the direct manufacturing methods of stents’ struts by SLM technology using Ti6Al4V with stent models made from photopolymerizable resins using SLA. Furthermore, computer-aided engineering (CAE) simulations for two different stent struts were carried out, providing insights into the potential of using these materials and methods for realizing the production of stents.

Originality/value

This study covers advancements in materials and additive manufacturing methods but also approaches the use of CAE analysis, introducing in this way novel elements to the domain of customized stent manufacturing. The emerging applications of these resins, along with metallic alloys and 3D printing technologies, have brought significant contributions to the biomedical domain, as emphasized in this study. This study concludes by highlighting the current challenges and future research directions in the use of photopolymerizable resins and biocompatible metallic alloys, while also emphasizing the integration of artificial intelligence in the design process of customized stents by taking into consideration the 3D printing technologies that are used for producing these stents.

Article
Publication date: 22 September 2021

Amna Farrukh, Sanjay Mathrani and Aymen Sajjad

Despite differing strategies towards environmental sustainability in developed and developing nations, the manufacturing sector in these regional domains faces substantial…

Abstract

Purpose

Despite differing strategies towards environmental sustainability in developed and developing nations, the manufacturing sector in these regional domains faces substantial environmental issues. The purpose of this study is to examine the green-lean-six sigma (GLSS) enablers and outcomes for enhancing environmental sustainability of manufacturing firms in both, a developed and developing country context by using an environment-centric natural resource-based view (NRBV).

Design/methodology/approach

First, a framework of GLSS enablers and outcomes aligned with the NRBV strategic capabilities is proposed through a systematic literature review. Second, this framework is used to empirically investigate the GLSS enablers and outcomes of manufacturing firms through in-depth interviews with lean six sigma and environmental consultants from New Zealand (NZ) and Pakistan (PK) (developed and developing nations).

Findings

Analysis from both regional domains highlights the use of GLSS enablers and outcomes under different NRBV capabilities of pollution prevention, product stewardship and sustainable development. A comparison reveals that NZ firms practice GLSS to comply with environmental regulatory requirements, avoid penalties and maintain their clean-green image. Conversely, Pakistani firms execute GLSS to reduce energy use, satisfy international customers and create a green image.

Practical implications

This paper provides new insights on GLSS for environmental sustainability which can assist industrial experts and academia for future strategies and research.

Originality/value

This is one of the early comparative studies that has used the NRBV to investigate GLSS enablers and outcomes in manufacturing firms for enhancing environmental performance comparing developed and developing nations

Details

International Journal of Lean Six Sigma, vol. 15 no. 3
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 5 March 2024

Fateme Asadi Touranlou, Ahmad Raeesi and Mitra Rezaei

This study aims to systematically review the health risk assessment of the concentration of heavy metals in Pistacia species globally.

Abstract

Purpose

This study aims to systematically review the health risk assessment of the concentration of heavy metals in Pistacia species globally.

Design/methodology/approach

The authors systematically searched PubMed, Science Direct, Scopus and Google Scholar to identify all articles published between 1 January 2002 and 20 August 2022. A total of 33 studies met the authors’ inclusion criteria, and their data were extracted. Additionally, the potential risk to human health was assessed by calculating the target hazard quotient and hazard index for both child and adult consumers.

Findings

The estimated daily intake for heavy metals in the included studies ranged from 9.72 × 10–9 to 7.35 (mg/day) in the following order: zinc (Zn) > mercury (Hg) > iron (Fe) > lead (Pb) > copper (Cu) > aluminum (Al) > nickel (Ni) > chromium (Cr) > manganese (Mn) > cadmium (Cd) > arsenic (As) > selenium (Se) > cobalt (Co). Among the studies that investigated heavy metals in Pistacia species around the world, the non-carcinogenic risk for all species of Pistacia was determined to be less than 1, except for Pb and Hg in Pistacia lentiscus.

Originality/value

The soil near the industrial area contained excessive amounts of heavy metals, which led to the transfer of heavy metals to plants. Owing to the insufficiency of the number of studies that examined heavy metals in Pistacia species, further monitoring and investigations were recommended.

Details

Nutrition & Food Science , vol. 54 no. 3
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 23 February 2024

Guangwei Liang, Zhiming Gao, Cheng-Man Deng and Wenbin Hu

The purpose of this study is to reveal the effect of nano-Al2O3 particle addition on the nucleation/growth kinetics, microhardness, wear resistance and corrosion resistance of…

Abstract

Purpose

The purpose of this study is to reveal the effect of nano-Al2O3 particle addition on the nucleation/growth kinetics, microhardness, wear resistance and corrosion resistance of Co–P–xAl2O3 nanocomposite plating.

Design/methodology/approach

The kinetics and properties of Co–P–xAl2O3 nanocomposite plating prepared by electroplating were investigated by electrochemical measurements, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Vickers microhardness measurement, SRV5 friction and wear tester and atomic force microscopy.

Findings

A 12 g/L nano-Al2O3 addition in the plating solution can transform the nucleation/growth kinetics of the plating from the 3D progressive model to the 3D instantaneous model. The microhardness of the plating increased with the increase of nano-Al2O3 content in plating. The wear resistance of the plating did not adhere strictly to Archard’s law. An even and denser corrosion product film was generated due to the finer grains, with a high corrosion resistance.

Originality/value

The effect of different nano-Al2O3 addition on the nucleation/growth kinetics and properties of Co–P–xAl2O3 nanocomposite plating was investigated, and an anticorrosion mechanism of Co–P–xAl2O3 nanocomposite plating was proposed.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 April 2023

Ronnarit Khuengpukheiw, Anurat Wisitsoraat and Charnnarong Saikaew

This paper aims to compare the wear behavior, surface roughness, friction coefficient and volume loss of high-velocity oxy-fuel (HVOF) sprayed WC–Co and WC–Cr3C2–Ni coatings on…

Abstract

Purpose

This paper aims to compare the wear behavior, surface roughness, friction coefficient and volume loss of high-velocity oxy-fuel (HVOF) sprayed WC–Co and WC–Cr3C2–Ni coatings on AISI 1095 steel with spraying times of 10 and 15 s.

Design/methodology/approach

In this study, the pin-on-disc testing technique was used to evaluate the wear characteristics at a speed of 0.24 m/s, load of 40 N and test time of 60 min under dry conditions at room temperature. The wear characteristics were examined and analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The surface roughness of a coated surface was measured, and microhardness measurements were performed on the cross-sectioned and polished surfaces of the coating.

Findings

Spraying time and powder material affected the hardness of HVOF coatings due to differences in the porosity of the coated layers. The average hardness of the WC–Cr3C2–Ni coating with a spaying time of 15 s was approximately 14% higher than that of the WC–Cr3C2–Ni coating with a spraying time of 10 s. Under an applied load of 40 N, the WC–Co coating with a spraying time of 15 s had the lowest variation in the friction coefficient compared with the other coatings. The WC–Co coating with a spraying time of 10 s had the lowest average and variation in volume loss compared to the other coatings. The WC–Cr3C2–Ni coating with a spraying time of 10 s exhibited the highest average volume loss. The wear features changed slightly with the spraying time owing to variations in the hardness and friction coefficient.

Originality/value

This study investigated tribological performance of WC–Co; WC-Cr3C2-Ni coatings with spraying times of 10 and 15 s using pin-on-disc tribometer by rotating the relatively soft pin (C45 steel) against hard coated substrate (disc).

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 December 2022

Vimal Kumar Deshmukh, Mridul Singh Rajput and H.K. Narang

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on…

Abstract

Purpose

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on as deposited features; and to understand the characteristics of jet electrodeposition deposition defects and its preventive procedures through available research articles.

Design/methodology/approach

A systematic review has been done based on available research articles focused on jet electrodeposition and its characteristics. The review begins with a brief introduction to micro-electrodeposition and high-speed selective jet electrodeposition (HSSJED). The research and developments on how jet electrochemical manufacturing are clustered with conventional micro-electrodeposition and their developments. Furthermore, this study converges on comparative analysis on HSSJED and recent research trends in high-speed jet electrodeposition of metals, their alloys and composites and presents potential perspectives for the future research direction in the final section.

Findings

Edge defect, optimum nozzle height and controlled deposition remain major challenges in electrochemical manufacturing. On-situ deposition can be used as initial structural material for micro and nanoelectronic devices. Integration of ultrasonic, laser and acoustic source to jet electrochemical manufacturing are current trends that are promising enhanced homogeneity, controlled density and porosity with high precision manufacturing.

Originality/value

This paper discusses the key issue associated to high-speed jet electrodeposition process. Emphasis has been given to various electrochemical parameters and their effect on deposition. Pros and cons of variations in electrochemical parameters have been studied by comparing the available reports on experimental investigations. Defects and their preventive measures have also been discussed. This review presented a summary of past achievements and recent advancements in the field of jet electrochemical manufacturing.

Article
Publication date: 24 April 2024

Ali Hassanzadeh, Ebrahim Ghorbani-Kalhor, Khalil Farhadi and Jafar Abolhasani

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Abstract

Purpose

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Design/methodology/approach

Sodium silicate is adopted as a substrate for GO and AgNPs with positive charge are used as modifiers. The synthesized nanocomposite is characterized by FTIR, FESEM, EDS, BET and XRD techniques. Then, some of the most effective parameters on the removal of CR and MB dyes such as solution pH, sorbent dose, adsorption equilibrium time, primary dye concentration and salt effect are optimized using the spectrophotometry technique.

Findings

The authors successfully achieved notable maximum adsorption capacities (Qmax) of CR and MB, which were 41.15 and 37.04 mg g−1, respectively. The required equilibrium times for maximum efficiency of the developed sorbent were 10 and 15 min for CR and MB dyes, respectively. Adsorption equilibrium data present a good correlation with Langmuir isotherm, with a correlation coefficient of R2 = 0.9924 for CR and R2 = 0.9904 for MB, and kinetic studies prove that the dye adsorption process follows pseudo second-order models (CR R2 = 0.9986 and MB R2 = 0.9967).

Practical implications

The results showed that the proposed mechanism for the function of the developed sorbent in dye adsorption was based on physical and multilayer adsorption for both dyes onto the active sites of non-homogeneous sorbent.

Originality/value

The as-prepared nano-adsorbent has a high ability to remove both cationic and anionic dyes; moreover, to the high efficiency of the adsorbent, it has been tried to make its synthesis steps as simple as possible using inexpensive and available materials.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 8 of 8