Search results

1 – 10 of 643
Article
Publication date: 21 March 2016

Dana H. Abdeen and Bruce R. Palmer

This paper aims to evaluate the corrosion behavior of Ti-6Al-4V parts produced with electron beam melting (EBM) machine and compare it with wrought Ti-6Al-4V alloy.

Abstract

Purpose

This paper aims to evaluate the corrosion behavior of Ti-6Al-4V parts produced with electron beam melting (EBM) machine and compare it with wrought Ti-6Al-4V alloy.

Design/methodology/approach

Potentiodynamic and potentiostatic tests were applied on EBM Ti-6Al-4V in 3.5 per cent mass NaCl solution to determine the pitting potential and critical pitting temperature (CPT). A relation between pitting potential and temperature was established for EBM Ti-6Al-4V alloy by conducting potentiodynamic testing under different temperatures. CPT was also measured for EBM Ti-6Al-4V alloy in 3.5 per cent mass NaCl solution at a standard potential of 800 mV vs saturated calomel electrode (SCE). The same tests were performed on wrought Ti-6Al-4V for comparison purposes. Moreover, CPT for EBM Ti-6Al-4V alloy was measured in 3.5 per cent mass NaCl solution of different pH of 2.0, 5.7 and 10.0 to examine the effect of aggressive conditions on the pitting corrosion of EBM alloy.

Findings

Potentiodynamic test resulted in a relatively high pitting potential of EBM alloy, which was close to the pitting potential of wrought alloy even at higher temperatures. In addition, EBM samples did not pit when potentiostatic test was performed at 800 mV vs SCE, even at high and low values of pH.

Originality/value

EBM Ti-6Al-4V alloy has been increasingly playing an important role in aerospace, automobile and industrial fields. The technique and conditions of manufacturing form voids and increase roughness of the exterior surface of EBM objects, which might increase the tendency to initiate pitting corrosion within its holes and surface folds. This article shows that, despite surface variations and porosity in EBM Ti-6Al-4V alloy, the material maintained its corrosion resistance. It was found that the corrosion behavior of EBM alloy was close to that of the conventionally made wrought Ti-6Al-4V alloy.

Details

Rapid Prototyping Journal, vol. 22 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 May 2011

Reza Shoja Razavi, Gholam Reza Gordani and H.C. Man

The purpose of this paper is to consider the corrosion properties of laser nitrided Ti‐6Al‐4V alloys that have been reported previously by several researchers.

1112

Abstract

Purpose

The purpose of this paper is to consider the corrosion properties of laser nitrided Ti‐6Al‐4V alloys that have been reported previously by several researchers.

Design/methodology/approach

Different kinds of surface nitriding methods of titanium alloys, such as plasma nitriding, ion nitriding, gas and laser nitriding, are introduced. Microstructure changes, such as phase formation and the influence of laser processing parameters in laser nitriding layers of Ti‐6Al‐4V alloys, were investigated using scanning electron microscope, transmission electron microscope, X‐ray photo‐electron spectroscopy, and X‐ray diffraction. Based on investigations presented in the literature, the effect of laser nitriding on the corrosion behavior of Ti‐6Al‐4V alloy was reviewed.

Findings

By regulating the laser processing parameter, the microstructure of the nitrided layer can be controlled to optimize corrosion properties. This layer improves corrosion behavior in most environments, due to the formation of a continuous TiNxOy passive film, which can retard the ingress of corrosive ions into the substrate and can maintain a constant value of a current density. Therefore, the laser gas nitrided specimens have a relatively noble corrosion potential and a very small corrosion current, as compared to untreated specimens.

Originality/value

This paper comprises a critical review, and its collection of references is useful. It summarizes current knowledge in laser surface treatment research.

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 30 July 2024

Bo He, Jian Tan, Guang Yang, Junzhen Yi and Yushi Wang

This paper aims to systematically investigate the effect of laser remelting on the surface morphology and mechanical properties of laser deposition manufactured thin-walled…

Abstract

Purpose

This paper aims to systematically investigate the effect of laser remelting on the surface morphology and mechanical properties of laser deposition manufactured thin-walled Ti-6Al-4V alloy.

Design/methodology/approach

Thin-walled Ti-6Al-4V samples were prepared by laser deposition manufacturing (LDM) method and subsequently surface-treated by laser remelting in a controlled environment. By experiments, the surface qualities and mechanical properties of LDM Ti-6Al-4V alloy before and after laser remelting were investigated.

Findings

After laser remelting, the surface roughness of LDM Ti-6Al-4V alloy decreases from 15.316 to 1.813 µm, hard and brittle martensite presents in the microstructure of the remelted layer, and the microhardness of the laser remelted layer increases by 11.39%. Compared with the machined LDM specimen, the strength of the specimen including the remelted layer improves by about 5%, while the elongation and fatigue life decrease by about 72.17% and 64.60%, respectively.

Originality/value

The results establish foundational data for the application of laser remelting to LDM thin-walled Ti-6Al-4V parts, and may provide an opportunity for laser remelting to process the nonfitting surfaces of LDM parts.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 March 2014

Mukund Dutt Sharma and Rakesh Sehgal

In the present study, an attempt has been made to examine friction and wear behaviour of Ti-6Al-4V alloy sliding against EN-31 steel under lubricative media of common commercial…

Abstract

Purpose

In the present study, an attempt has been made to examine friction and wear behaviour of Ti-6Al-4V alloy sliding against EN-31 steel under lubricative media of common commercial grade oil (hydrol-68). The paper aims to discuss these issues.

Design/methodology/approach

Tribological properties of Ti-6Al-4V under hydrol-68 as lubricative media are measured using multi-tribo tester. Lubricating oil samples at different normal loads have also been analysed with the help of laser net fines (LNF) as per ISO 4406:1999. Experiments have been designed by two level full factorial method.

Findings

Experimental results indicate that the wear rate of Ti-6Al-4V alloy decreases as sliding speed increases. But it shows typical transition characteristics as the normal load increases; till 30 N wear rate decreases then it increases from 30 to 50 N. Also for all loads and at every speed, the average wear increases as the sliding distance increases. The average coefficient of friction of the Ti-6Al-4V alloy decreases with the increase in sliding velocity and normal load. Lubricating oil analysis indicates that the maximum wear particle size (5-15 μm) was obtained at a normal load of 50 N.

Originality/value

This paper shows that considerable reduction in friction and wear is achieved by using common grade oil hydrol-68 as lubricative media. Further, the analysis of lubricating oil using LNF at different normal loads indicates the co-existence of various wear phenomena such as cutting, fatigue, and sliding wear simultaneously.

Details

Industrial Lubrication and Tribology, vol. 66 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 October 2021

Edwin Sallica-Leva, Fernando Henrique da Costa, Cláudio Teodoro Dos Santos, André Luiz Jardini, Jorge Vicente Lopes da Silva and João Batista Fogagnolo

This paper aims to describe the obtainment of Ti-6Al-4V parts with a hierarchical arrangement of pores by additive manufacturing, aiming at designing orthopedic implants.

Abstract

Purpose

This paper aims to describe the obtainment of Ti-6Al-4V parts with a hierarchical arrangement of pores by additive manufacturing, aiming at designing orthopedic implants.

Design/methodology/approach

The experimental methodology compares microstructural and mechanical properties of Menger pre-fractal sponges of Ti-6Al-4V alloy, manufactured by laser powder bed fusion (LPBF) and electron beam powder bed fusion (EBPBF), with three different porosity volumes. The pore arrangement followed the formation sequence of the Menger sponge, with hierarchical order from 1 to 3.

Findings

The LPBF parts presented a martensitic microstructure, while the EBPBF parts presented an α + ß microstructure, independently of its wall thickness. The LPBF parts presented higher mechanical resistance and effective stiffness than the EBPBF parts with similar porosity volume. The stiffness values of the Menger pre-fractal sponges of Ti-6Al-4V alloy, between 4 and 29 GPa, are comparable to those of the cortical bone. Furthermore, the deformation behavior presented by the Menger pre-fractal sponges of Ti-6Al-4V alloy did not follow the Gibson and Ashby model's prediction.

Originality/value

To the best of the authors' knowledge, this is the first study to obtain Menger pre-fractal sponges of Ti-6Al-4V alloy by LPBF and EBPBF. The deformation behavior of the obtained porous parts was contrasted with the Gibson and Ashby model's prediction.

Details

Rapid Prototyping Journal, vol. 28 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 October 2017

Manikandakumar Shunmugavel, Ashwin Polishetty, Moshe Goldberg, Rajkumar Singh and Guy Littlefair

The purpose of this paper is to study and compare the mechanical properties and machinability characteristics of additive manufactured titanium alloy Ti-6Al-4V with conventionally…

1355

Abstract

Purpose

The purpose of this paper is to study and compare the mechanical properties and machinability characteristics of additive manufactured titanium alloy Ti-6Al-4V with conventionally produced wrought titanium alloy,Ti-6Al-4V. The difference in mechanical properties such as yield strength, ultimate tensile strength, micro hardness, percentage of elongation and their effect on machinability characteristics like cutting forces and surface roughness are studied. It was found that higher strength and hardness of SLM Ti-6Al-4V compared to wrought Ti-6Al-4V owing to its peculiar acicular microstructure significantly affected the cutting forces and surface roughness. High cutting forces and low surface roughness were observed during machining of additive manufactured components compared to its wrought counterpart because of their difference in strength, hardness and ductility.

Design/methodology/approach

Mechanical properties like yield strength, ultimate tensile strength, hardness and percentage of elongation and machinability characteristics like cutting forces and surface roughness were studied for both wrought and additive manufactured Ti-6Al-4V.

Findings

Mechanical properties like yield strength, ultimate tensile strength and hardness were higher for additive manufactured components as compared to the wrought component. However additive manufactured components significantly lacked in ductility as compared to the wrought parts. Concerning machining, higher cutting forces and lower surface roughness were observed in additive manufactured Ti-6Al-4V compared to the wrought part as a result of differences in mechanical properties of these differently processed materials.

Originality/value

This paper, for the first time, discusses the machining capabilities of additive manufactured Ti-6Al-4V.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 May 2011

Lothar Wagner, Mansour Mhaede, Manfred Wollmann, Igor Altenberger and Yuji Sano

The purpose of this paper is to investigate the influence of mechanical surface treatments on the surface layer properties and the fatigue performance of the aircraft alloys Al…

1407

Abstract

Purpose

The purpose of this paper is to investigate the influence of mechanical surface treatments on the surface layer properties and the fatigue performance of the aircraft alloys Al 7075‐T73 and Ti‐6Al‐4V

Design/methodology/approach

Laser peening without coating (LPwC), shot peening (SP), ultrasonic shot peening (USP) and ball burnishing (BB) were applied and the resulting changes in surface roughness and residual stress‐depth profiles were evaluated. Fatigue performance of both alloys was tested in rotating beam loading (R=−1) on hourglass‐shaped specimens and the results were compared with the electrolytically polished (EP) reference conditions.

Findings

All studied mechanical surface treatments led to pronounced increases in fully reversed fatigue lives and fatigue strengths in both Al 7075‐T73 and Ti‐6Al‐4V.

Originality/value

To the authors' knowledge, this is the first paper that compares fatigue performance of a wide variety of mechanically surface treated conditions in two aircraft alloys.

Details

International Journal of Structural Integrity, vol. 2 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 24 August 2023

Fatih Yılmaz, Ercan Gürses and Melin Şahin

This study aims to evaluate and assess the elastoplastic properties of Ti-6Al-4V alloy manufactured by Arcam Q20 Plus electron beam melting (EBM) machine by a tensile test…

Abstract

Purpose

This study aims to evaluate and assess the elastoplastic properties of Ti-6Al-4V alloy manufactured by Arcam Q20 Plus electron beam melting (EBM) machine by a tensile test campaign and micro computerized tomography (microCT) imaging.

Design/methodology/approach

ASTM E8 tensile test specimens are designed and manufactured by EBM at an Arcam Q20 Plus machine. Surface quality is improved by machining to discard the effect of surface roughness. After surface machining, hot isostatic pressing (HIP) post-treatment is applied to half of the specimens to remove unsolicited internal defects. ASTM E8 tensile test campaign is carried out simultaneously with digital image correlation to acquire strain data for each sample. Finally, build direction and HIP post-treatment dependencies of elastoplastic properties are analyzed by F-test and t-test statistical analyses methods.

Findings

Modulus of elasticity presents isotropic behavior for each build direction according to F-test and t-test analysis. Yield and ultimate strengths vary according to build direction and post-treatment. Stiffness and strength properties are superior to conventional Ti-6Al-4V material; however, ductility turns out to be poor for aerospace structures compared to conventional Ti-6Al-4V alloy. In addition, micro CT images show that support structure leads to dense internal defects and pores at applied surfaces. However, HIP post-treatment diminishes those internal defects and pores thoroughly.

Originality/value

As a novel scientific contribution, this study investigates the effects of three orthogonal build directions on elastoplastic properties, while many studies focus on only two-build directions. Evaluation of Poisson’s ratio is the other originality of this study. Furthermore, another finding through micro CT imaging is that temporary support structures result in intense defects closer to applied surfaces; hence high-stress regions of structures should be avoided to use support structures.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 March 2024

Diana Irinel Baila, Filippo Sanfilippo, Tom Savu, Filip Górski, Ionut Cristian Radu, Catalin Zaharia, Constantina Anca Parau, Martin Zelenay and Pacurar Razvan

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM…

Abstract

Purpose

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM) processes, have gained significant attention in recent years. Their accuracy, multi-material capability and application in novel fields, such as implantology, biomedical, aviation and energy industries, underscore the growing importance of these materials. The purpose of this study is oriented toward the application of new advanced materials in stent manufacturing realized by 3D printing technologies.

Design/methodology/approach

The methodology for designing personalized medical devices, implies computed tomography (CT) or magnetic resonance (MR) techniques. By realizing segmentation, reverse engineering and deriving a 3D model of a blood vessel, a subsequent stent design is achieved. The tessellation process and 3D printing methods can then be used to produce these parts. In this context, the SLA technology, in close correlation with the new types of developed resins, has brought significant evolution, as demonstrated through the analyses that are realized in the research presented in this study. This study undertakes a comprehensive approach, establishing experimentally the characteristics of two new types of photopolymerizable resins (both undoped and doped with micro-ceramic powders), remarking their great accuracy for 3D modeling in die-casting techniques, especially in the production process of customized stents.

Findings

A series of analyses were conducted, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, mapping and roughness tests. Additionally, the structural integrity and molecular bonding of these resins were assessed by Fourier-transform infrared spectroscopy–attenuated total reflectance analysis. The research also explored the possibilities of using metallic alloys for producing the stents, comparing the direct manufacturing methods of stents’ struts by SLM technology using Ti6Al4V with stent models made from photopolymerizable resins using SLA. Furthermore, computer-aided engineering (CAE) simulations for two different stent struts were carried out, providing insights into the potential of using these materials and methods for realizing the production of stents.

Originality/value

This study covers advancements in materials and additive manufacturing methods but also approaches the use of CAE analysis, introducing in this way novel elements to the domain of customized stent manufacturing. The emerging applications of these resins, along with metallic alloys and 3D printing technologies, have brought significant contributions to the biomedical domain, as emphasized in this study. This study concludes by highlighting the current challenges and future research directions in the use of photopolymerizable resins and biocompatible metallic alloys, while also emphasizing the integration of artificial intelligence in the design process of customized stents by taking into consideration the 3D printing technologies that are used for producing these stents.

Article
Publication date: 8 May 2017

Raja Izamshah Raja Abdullah, Bahrin Ikram Redzuwan, Mohd Sanusi Abdul Aziz and Mohd Shahir Kasim

The purpose of this study was to compare machining performance between chemical vapor deposition (CVD)- and physical vapor deposition (PVD)-coated cutting tools to obtain the…

Abstract

Purpose

The purpose of this study was to compare machining performance between chemical vapor deposition (CVD)- and physical vapor deposition (PVD)-coated cutting tools to obtain the optimal cutting parameters based on different types of tools for machining titanium alloy (Ti-6Al-4V).

Design/methodology/approach

The design of the experiment was constructed using the response surface methodology (RSM) with the Box–Behnken method. Two types of round-shaped tungsten carbide inserts were used in this experiment, namely, PVD TiAlN/AlCrN insert tool and CVD TiCN/Al2O3 insert tool. The titanium alloy (Ti-6Al-4V) material was used throughout this experiment. The tool wear and microstructure analysis were measured using a tool maker microscope, an optical microscope and a scanning electron machine.

Findings

The PVD TiAlN/AlCrN insert tool produces the lowest tool wear that significantly prolongs the cutting tool life compared to the CVD TiCN/Al2O3 insert tool. In addition, depth of cut was the main factor affecting the tool life, followed by cutting speed and feed rate.

Originality/value

This study was conducted to compare machining performance between CVD- and PVD-coated cutting tools to obtain the optimal cutting parameters based on different types of tools for machining titanium alloy (Ti-6Al-4V). In addition, the information presented in this paper helps reduce the manufacturing cost and setup time for machining titanium alloy. Finally, tool wear comparison between PVD- and CVD-coated titanium alloys was also presented for future improvement for tool manufacturing application.

Details

Industrial Lubrication and Tribology, vol. 69 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 643