Search results

1 – 10 of 378
Article
Publication date: 1 August 2016

Govindan Karthikeyan, Govind Nalankilli, O L Shanmugasundaram and Chidambaram Prakash

– The purpose of this paper is to present the thermal comfort properties of single jersey knitted fabric structures made from bamboo, tencel and bamboo-tencel blended yarns.

Abstract

Purpose

The purpose of this paper is to present the thermal comfort properties of single jersey knitted fabric structures made from bamboo, tencel and bamboo-tencel blended yarns.

Design/methodology/approach

Bamboo, tencel fibre and blends of the two fibres were spun into yarns of identical linear density (30s Ne). Each of the blended yarns so produced was converted to single jersey knitted fabrics with loose, medium and tight structures.

Findings

An increase in tencel fibre in the fabric had led to a reduction in fabric thickness and GSM. Air permeability and water-vapour permeability also increased with increase in tencel fibre content. The anticipated increase in air permeability and relative water vapour permeability with increase in stitch length was observed. The thermal conductivity of the fabrics was generally found to increase with increase in the proportion of bamboo.

Research limitations/implications

It is clear from the foregoing that, although a considerable amount of work has been done on bamboo blends and their properties, still there are many gaps existing in the literature, in particular, on thermal comfort, moisture management and spreading characteristics. Thus the manuscript addresses these issues and provides valuable information on the comfort characteristics of the blended fabrics for the first time. In the evolution of this manuscript, it became apparent that a considerable amount of work was needed to fill up the gaps existing in the literature and hence this work which deals with an investigation of the blend yarn properties and comfort properties of knitted fabrics was taken up.

Originality/value

This research work is focused on the thermal comfort parameters of knitted fabrics made from 100 per cent tencel yarn, 100 per cent bamboo yarn and tencel/bamboo blended yarns of different blend ratios.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 August 2019

Giridharan R., Raatan V.S. and Jenarthanan M.P.

The purpose of this paper is to study the effects of fiber length and content on properties of E-glass and bamboo fiber reinforced epoxy resin matrices. Experiments are carried…

Abstract

Purpose

The purpose of this paper is to study the effects of fiber length and content on properties of E-glass and bamboo fiber reinforced epoxy resin matrices. Experiments are carried out as per ASTM standards to find the mechanical properties. Further, fractured surface of the specimen is subjected to morphological study.

Design/methodology/approach

Composite samples were prepared according to ASTM standards and were subjected to tensile and flexural loads. The fractured surfaces of the specimens were examined directly under scanning electron microscope.

Findings

From the experiment, it was found that the main factors that influence the properties of composite are fiber length and content. The optimum fiber length and weight ratio are 15 mm and 16 percent, respectively, for bamboo fiber/epoxy composite. Hence, the prediction of optimum fiber length and content becomes important, so that composite can be prepared with best mechanical properties. The investigation revealed the suitability of bamboo fiber as an effective reinforcement in epoxy matrix.

Practical implications

As bamboo fibers are biodegradable, recyclable, light weight and so on, their applications are numerous. They are widely used in automotive components, aerospace parts, sporting goods and building industry. With this scenario, the obtained result of bamboo fiber reinforced composites is not ignorable and could be of potential use, since it leads to harnessing of available natural fibers and their composites rather than synthetic fibers.

Originality/value

This work enlists the effect of fiber length and fiber content on tensile and flexural properties of bamboo fiber/epoxy composite, which has not been attempted so far.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 July 2023

Amal Mohamed El-Moursy, Zeinab Mohmed Abdel Mageid, Manar Yahia Ismail Abd El-Aziz, Nour Asser and Osama Hakeim

Wearing clothes requires specifications for feeling comfortable, derived from the fibres, fabrics and finishing properties. This study aims to deal with the effect of economic…

Abstract

Purpose

Wearing clothes requires specifications for feeling comfortable, derived from the fibres, fabrics and finishing properties. This study aims to deal with the effect of economic blends containing hollow fibres, bamboo and cotton/polyester waste on the mechanical properties of the produced fabrics and the appropriate end use.

Design/methodology/approach

This research included two blends: one consisted of cotton/polyester wastes blended with bamboo and the other to which Chorisia fibres were added. Two weft counts 10,6/1 Ne were made from each blend, which were used to produce four fabric samples (S1 Chorisia-free and S2 with Chorisia); additionally, another two samples were dyed that contain Chorisia (S3) from each count. The six samples were tested by Kawabata Evaluation System (KES).

Findings

The samples gave a good total hand value (THV) for use as men's winter suits, where the thicker count 6/1, with and without Chorisia had better properties, also both counts 6, 10/1 with dye. The hollow fibres affected the fabrics’ properties, including thickness, shear, bending, thermal conductivity and weight. Both blends had a positive effect on THV.

Research limitations/implications

Cotton/polyester waste, Chorisia and bamboo fibres were tested, and 2% Remazol Yellow GNL dye was used.

Practical implications

The ratio of blending, weft counts and dye affected the fabric’s properties, with consequences for the use of the Kawabata system and its applications.

Social implications

The fabrics used in this research may be considered to be economical and have good THV.

Originality/value

The study proved the usefulness of fabrics made of two blends. The Chorisia component may be seen as a good alternative to cotton fibres to reduce the cost of producing high-consumption winter suit fabrics.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 16 June 2021

Nachiappan Sukumar, Mekonnen Bayeleyegn and Sampath Aruna

Recently, composites have concerned considerable importance as a potential operational material. Lots of work have been carried out to enhance the mechanical properties of…

124

Abstract

Purpose

Recently, composites have concerned considerable importance as a potential operational material. Lots of work have been carried out to enhance the mechanical properties of composites. The main aim of this paper is to develop bamboo mat as reinforcing material with bagasse fiber as filler using epoxy resin matrix composite.

Design/methodology/approach

In this research, the effect of fiber surface treatments on mechanical properties of epoxy resin composite with bagasse as filler has been developed and investigated. The extracted bamboo fibers were treated with NaOH to improve the surface roughness fiber. Using treated and untreated bamboo fiber handwoven mat has been produced to be used as reinforcement and bagasse fiber has been converted into powder to be filled as filler. Composite material is fabricated using bamboo fiber and bagasse fiber as filler with epoxy resin as a matrix using hand layup technique.

Findings

Then, tensile, flexural and compressive strength and water absorption tests were conducted on sodium hydroxide treated and untreated fiber composites. The test results comparing with and without alkali treated composites show that there was significant change in their strength and water absorption properties on alkali treated fiber.

Originality/value

This study is an original research paper.

Details

Research Journal of Textile and Apparel, vol. 26 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 June 2023

Heba Tolla El Sayed Abo El Naga and Manar Yahia Ismail Abd El-Aziz

Synthetic materials have many drawbacks in high-performance garments because they absorb less moisture and cause allergies to sensitive individuals. Cotton materials cannot…

Abstract

Purpose

Synthetic materials have many drawbacks in high-performance garments because they absorb less moisture and cause allergies to sensitive individuals. Cotton materials cannot satisfy all the requirements and cannot provide the required high performance. This study aims to use eco-friendly materials with a common structure to analyse their suitability for high-performance garment application.

Design/methodology/approach

This study used two eco-friendly yarns (bamboo, modal and bamboo: modal 50:50) and yarns per needle (two- and four-ply yarns). with a single jersey knit construction and gauge of 7. The physical, mechanical, appearance, comfort, thermal and ultraviolet protection factor (UPF) protection characteristics were evaluated using 15 tests.

Findings

The produced knitted fabrics showed high performance for use as garments with physical, mechanical, appearance, comfort, thermal and UPF protection characteristics that were achieved, tested and analysed. The highest-achieved samples with a good UPF (<15) were made from bamboo material, which has other high-performance characteristics such as antibacterial characteristics, a soft surface, thermal insulation and others.

Research limitations/implications

The single jersey structure was used for producing fabrics as it is the common structure in the garment. Also, only gauge 7 was used for its economics and ease of production.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 12 March 2018

Wasif Latif, Abdul Basit, Zulfiqar Ali and Sajjad Ahmad Baig

The purpose of this paper is to study the 100 percent pure cotton and 50:50 cotton and regenerated fibers (tencel, modal, bamboo, viscose) blends. The blends of regenerated fibers…

Abstract

Purpose

The purpose of this paper is to study the 100 percent pure cotton and 50:50 cotton and regenerated fibers (tencel, modal, bamboo, viscose) blends. The blends of regenerated fibers with cotton are studied so as to replace 100 percent cotton fabrics with the cotton blends as cotton cannot fulfill the demand of clothing due to the increasing population.

Design/methodology/approach

In order to conduct this study, cotton, as natural cellulose fiber, was used. Regenerated fibers include viscose, tencel, modal and bamboo. Five yarn samples of Ne 30/1 of 100 percent cotton and blends (50:50) of cotton with tencel, modal, bamboo and viscose fibers were produced. The blending was done in the Blow-room, and yarn samples were produced by employing the ring spinning technique. Plain woven fabrics samples with Ends (76) and Picks (68) per inch of 120 gsm were prepared. The fabric samples were tested for mechanical (warp and weft tensile and tear strengths) and comfort properties (air permeability, moisture management and thermal resistance).

Findings

Cotton:tencel fabric has the excellent mechanical (tensile and tear strength) as well as comfort properties (air permeability, moisture management and thermal resistance). It means that the most suitable blend that cotton can make with the regenerated fibers is the tencel. Therefore, to have more comfortable fabrics, the fabrics which are being made by 100 percent cotton can be replaced with the cotton:tencel.

Originality/value

To the authors’ information, no study has been reported in which all the regenerated fibers blended with cotton were studied. Hence, the aim of this work is to study the mechanical and comfort properties of the regenerated fibers (modal, tencel, viscose and bamboo) blended with cotton. The blends of cotton with regenerated fibers might replace 100 percent cotton in clothing applications as cotton cannot fulfill the increasing demanding of clothing.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 27 July 2012

Diana Grineviciute, Sigitas Krauledas and Matas V. Gutauskas

The purpose of this research is to perform instrumental comparison of hand parameters of knitted fabrics produced from different biodegradable fibres and to analyze peculiarities…

Abstract

Purpose

The purpose of this research is to perform instrumental comparison of hand parameters of knitted fabrics produced from different biodegradable fibres and to analyze peculiarities of hand parameters' extent influenced by fabric structure and chemical softening.

Design/methodology/approach

The hand of five types of different biodegradable fabrics was evaluated. Experiments were performed using a method based on the principle of specimen biaxial punching deformation when a disc‐shaped specimen is extracted through a round nozzle. The Influence of fabric weave (terry and plain jersey) and finishing (padding with the silicone softener “Belfasin SI”) on the fabric hand was investigated.

Findings

Investigations have shown that weave type and finishing significantly influenced fabric hand properties. It was also stated that even tenuous differences between fabric parameters could be obtained by one numeral value of complex hand rate Q.

Practical implications

Experiments have shown that KTU–Griff–Tester is a simple, reliable instrumental device suitable to obtain quantitative information about fabric mechanical properties. Evaluation of finishing influence on a fabric hand could be precisely expressed by one parameter Q.

Originality/value

In the present research quantitative evaluation of new fabrics from biodegradable fibres hand was performed. Comparison between new biodegradable and traditional cotton fabrics has shown that new biodegradable fibres which are generally used for underwear, sportswear and for medical application are characterized by soft hand, as a result a good affinity with skin.

Details

International Journal of Clothing Science and Technology, vol. 24 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 13 August 2018

Aidy Ali, Wei Kuan Ng, Faiz Arifin, Kannan Rassiah, Faiz Othman, Shauqi Hazin and Megat Hamdan Megat Ahmad

The purpose of this paper is to investigate the fracture properties of hybrid woven bamboo (WB)/woven e-glass (EG) fiber composites with various layer arrangements. This paper…

Abstract

Purpose

The purpose of this paper is to investigate the fracture properties of hybrid woven bamboo (WB)/woven e-glass (EG) fiber composites with various layer arrangements. This paper utilized a specific type of bamboo species named Gigantochloa Scortechinii (Buluh Semantan).

Design/methodology/approach

In these experiments, unsaturated polyester, woven EG and WB fibers were prepared through the hand lay-up technique. The composite bamboo strips were prepared in 1.5 mm thickness. The strips are woven to make a single layer. The layer was then laminated into several thicknesses. The specimens were then characterized using compact tension fracture tests.

Findings

The fracture toughness of 12–14 MPa was obtained. These findings suggest that this hybrid bamboo composite provides superior fracture strength that is equivalent with steel alloy and is extremely a good alternative for reinforcing fibers to combat fracture failures of materials and structures.

Originality/value

In this paper, experimental determination of newly developed composite made of WB and woven EG is presented.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 21 June 2023

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles D’Souza and Thirumaleshwara Bhat

This paper aims to report the effect of titanium oxide (TiO2) particles on the specific wear rate (SWR) of alkaline treated bamboo and flax fiber-reinforced composites (FRCs…

Abstract

Purpose

This paper aims to report the effect of titanium oxide (TiO2) particles on the specific wear rate (SWR) of alkaline treated bamboo and flax fiber-reinforced composites (FRCs) under dry sliding condition by using a robust statistical method.

Design/methodology/approach

In this research, the epoxy/bamboo and epoxy/flax composites filled with 0–8 Wt.% TiO2 particles have been fabricated using simple hand layup techniques, and wear testing of the composite was done in accordance with the ASTM G99-05 standard. The Taguchi design of experiments (DOE) was used to conduct a statistical analysis of experimental wear results. An analysis of variance (ANOVA) was conducted to identify significant control factors affecting SWR under dry sliding conditions. Taguchi prediction model is also developed to verify the correlation between the test parameters and performance output.

Findings

The research study reveals that TiO2 filler particles in the epoxy/bamboo and epoxy/flax composite will improve the tribological properties of the developed composites. Statistical analysis of SWR concludes that normal load is the most influencing factor, followed by sliding distance, Wt.% TiO2 filler and sliding velocity. ANOVA concludes that normal load has the maximum effect of 31.92% and 35.77% and Wt.% of TiO2 filler has the effect of 17.33% and 16.98%, respectively, on the SWR of bamboo and flax FRCs. A fairly good agreement between the Taguchi predictive model and experimental results is obtained.

Originality/value

This research paper attempts to include both TiO2 filler and bamboo/flax fibers to develop a novel hybrid composite material. TiO2 micro and nanoparticles are promising filler materials, it helps to enhance the mechanical and tribological properties of the epoxy composites. Taguchi DOE and ANOVA used for statistical analysis serve as guidelines for academicians and practitioners on how to best optimize the control variable with particular reference to natural FRCs.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 May 2023

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

This paper aims to report the effect of titanium oxide (TiO2) particles on the physical, mechanical, tribological and water resistance properties of 5% NaOH-treated bamboo…

Abstract

Purpose

This paper aims to report the effect of titanium oxide (TiO2) particles on the physical, mechanical, tribological and water resistance properties of 5% NaOH-treated bamboo fiber–reinforced composites.

Design/methodology/approach

In this research, the epoxy/bamboo/TiO2 hybrid composite filled with 0–8 Wt.% TiO2 particles has been fabricated using simple hand layup techniques, and testing of the developed composite was done in accordance with the American Society for Testing and Materials (ASTM) standard.

Findings

The results of this study indicate that the addition of TiO2 particles improved the mechanical properties of the developed epoxy/bamboo composites. Tensile properties were found to be maximum for 6 Wt.%, and impact strength was found to be maximum for 8 Wt.% TiO2 particles-filled composite. The highest flexural properties were found at a lower TiO2 fraction of 2 Wt.%. Adding TiO2 filler helped to reduce the water absorption rate. The studies related to the wear and friction behavior of the composite under dry and abrasive wear conditions reveal that TiO2 filler was beneficial in improving the wear performance of the composite.

Originality/value

This research paper attempts to include both TiO2 filler and bamboo fibers to develop a novel composite material. TiO2 micro and nanoparticles are promising filler materials; it helps to enhance the mechanical and tribological properties of the epoxy composites and in literature, there is not much work reported, where TiO2 is used as a filler material with bamboo fiber–reinforced epoxy composites.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 378