Search results

1 – 10 of 624
Article
Publication date: 13 August 2018

Aidy Ali, Wei Kuan Ng, Faiz Arifin, Kannan Rassiah, Faiz Othman, Shauqi Hazin and Megat Hamdan Megat Ahmad

The purpose of this paper is to investigate the fracture properties of hybrid woven bamboo (WB)/woven e-glass (EG) fiber composites with various layer arrangements. This paper…

Abstract

Purpose

The purpose of this paper is to investigate the fracture properties of hybrid woven bamboo (WB)/woven e-glass (EG) fiber composites with various layer arrangements. This paper utilized a specific type of bamboo species named Gigantochloa Scortechinii (Buluh Semantan).

Design/methodology/approach

In these experiments, unsaturated polyester, woven EG and WB fibers were prepared through the hand lay-up technique. The composite bamboo strips were prepared in 1.5 mm thickness. The strips are woven to make a single layer. The layer was then laminated into several thicknesses. The specimens were then characterized using compact tension fracture tests.

Findings

The fracture toughness of 12–14 MPa was obtained. These findings suggest that this hybrid bamboo composite provides superior fracture strength that is equivalent with steel alloy and is extremely a good alternative for reinforcing fibers to combat fracture failures of materials and structures.

Originality/value

In this paper, experimental determination of newly developed composite made of WB and woven EG is presented.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 August 2016

Sunil Bhat and S. Narayanan

Since failure of laminated composites by delaminations is common, the purpose of this paper is to present a numerical procedure to check the stability of delaminations in fiber…

Abstract

Purpose

Since failure of laminated composites by delaminations is common, the purpose of this paper is to present a numerical procedure to check the stability of delaminations in fiber metal laminate (Glare), with different possible damage configurations, under uni-axial tension. Deformation behavior of the laminate is also examined. Influence of the type and the extent of damage, represented by varying sizes and number of delaminations, on delamination driving force and laminate deformation is found.

Design/methodology/approach

Delaminated Glare is modeled by finite element method. Interface cohesive elements are used to model the delaminations. Finite element results provide the deflection/deformation characteristics of the laminate. Driving forces of delaminations are estimated by J integrals that are numerically obtained over cyclic paths near delamination tips. Laminates with different types of delaminations are also fabricated and externally delaminated for measurement of their interlaminar fracture toughness. The delamination is considered to be stable if its driving force is less than corresponding interlaminar fracture toughness of the laminate.

Findings

Delaminations are found to be stable in laminates with lower number of delaminations and unstable in laminates with higher number of delaminations. Increase in size of delaminations increases the deformations but reduces the delamination driving force whereas increase in number of delaminations increases both deformations and driving forces. The trends change in case of laminates with symmetrical damage. Shape of delamination is also found to influence the deformations and driving forces. The finite element model is validated.

Research limitations/implications

There is scope for validating the numerical results reported in the paper by theoretical models.

Practical implications

Checking the stability of delaminations and their effect on deformation behavior of the laminate helps is assessment of safety and remaining life of the laminate. If failure is predicted, preemptive action is taken by using repair patch ups at identified critical locations in order to avoid failures in service conditions.

Originality/value

The paper offers the following benefits: use of cohesive zone method that is readily possible in finite element procedures and is relatively simple, fast and reasonably accurate is demonstrated; suitability of using J integrals over paths crossing non-homogeneous and property mismatched material layers is tested; and influence of the type and the extent of damage in the laminate on its deformation behavior and delamination driving forces is found. This type of work has not been reported so far.

Details

International Journal of Structural Integrity, vol. 7 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 December 2023

Akash Gupta and Manjeet Singh

This study aims to evaluate the failure behavior of glass fiber-reinforced epoxy (GFRE) laminate subjected to cyclic loading conditions. It involves experimental investigation and…

27

Abstract

Purpose

This study aims to evaluate the failure behavior of glass fiber-reinforced epoxy (GFRE) laminate subjected to cyclic loading conditions. It involves experimental investigation and statistical analysis using Weibull distribution to characterize the failure behavior of the GFRE composite laminate.

Design/methodology/approach

Fatigue tests were conducted using a tension–tension loading scheme at a frequency of 2 Hz and a loading ratio (R) of 0.1. The tests were performed at five different stress levels, corresponding to 50%–90% of the ultimate tensile strength (UTS). Failure behavior was assessed through cyclic stress-strain hysteresis plots, dynamic modulus behavior and scanning electron microscopy (SEM) analysis of fracture surfaces.

Findings

The study identified common modes of failure, including fiber pullouts, fiber breakage and matrix cracking. At low stress levels, fiber breakage, matrix cracking and fiber pullouts occurred due to high shear stresses at the fiber–matrix interface. Conversely, at high stress levels, fiber breakage and matrix cracking predominated. Higher stress levels led to larger stress-strain hysteresis loops, indicating increased energy dissipation during cyclic loading. High stress levels were associated with a more significant decrease in stiffness over time, implying a shorter fatigue life, while lower stress levels resulted in a gradual decline in stiffness, leading to extended fatigue life.

Originality/value

This study makes a valuable contribution to understanding fatigue behavior under tension–tension loading conditions, coupled with an in-depth analysis of the failure mechanism in GFRE composite laminate at different stress levels. The fatigue behavior is scrutinized through stress-strain hysteresis plots and dynamic modulus versus normalized cycles plots. Furthermore, the characterization of the failure mechanism is enhanced by using SEM imaging of fractured specimens. The Weibull distribution approach is used to obtain a reliable estimate of fatigue life.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 June 2015

Victor Rizov

The purpose of this paper is to study theoretically the ability of the prestressed foam core composite sandwich Split Cantilever Beam (SCB) for generating mixed-mode II/III crack…

Abstract

Purpose

The purpose of this paper is to study theoretically the ability of the prestressed foam core composite sandwich Split Cantilever Beam (SCB) for generating mixed-mode II/III crack loading conditions (the mode II fracture was provided by prestressing the beam using imposed transverse displacements).

Design/methodology/approach

The concepts of linear-elastic fracture mechanics were used. The fracture behavior was studied in terms of the strain energy release rate. For this purpose, a three-dimensional finite element model of the prestressed sandwich SCB was developed. The virtual crack closure technique was applied in order to analyze the strain energy release rate mode components distribution along the crack front.

Findings

It was found that the distribution is non-symmetric. The analysis revealed that a wide mixed-mode II/III ratios range can be generated by varying the magnitude of the imposed transverse displacement. The influence of the sandwich core material on the mixed-mode II/III fracture behavior was investigated. For this purpose, three sandwich beam configurations with different rigid cellular foam core were simulated. It was found that the strain energy release rate decreases when the foam core density increases.

Originality/value

For the first time, a mixed-mode II/III fracture study of foam core composite sandwich beam is performed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 August 2019

Sai Krishna Chitturi, A.A. Shaikh and Alpesh H. Makwana

A growing response in the development of hybrid composites to conquer the deficiency of neat composites has provoked doing this work. Thermoplastic Polycarbonate material offers…

Abstract

Purpose

A growing response in the development of hybrid composites to conquer the deficiency of neat composites has provoked doing this work. Thermoplastic Polycarbonate material offers better impact toughness with low structural weight. There is a little/no information available over the selected sandwich hybrid composite prepared from woven E-Glass and polycarbonate sheet. The purpose of this paper is to understand the response of the novel hybrid structure under tensile, flexural, interlaminar shear and impact loading conditions.

Design/methodology/approach

The hand-layup technique is used for fabricating the hybrid composites in the laminate configuration. The hybrid composites are prepared with a total fiber content of 70 percent weight fractions. The effect of the percentage of reinforcement on mechanical properties is evaluated experimentally as per American society for testing materials standard test methods. The damaged mechanisms of failed samples and fractured surfaces are well analyzed using vision measuring system and scanning electron microscopy.

Findings

A decline in densities of hybrid composites up to 22.5 percent is noticed with reference to neat composite. An increase in impact toughness up to 40.73 percent is marked for hybrid laminates owing to the ductile nature of PC. Delamination is identified to be the major mode of failure apart from fiber fracture/pull-out, matrix cracking in all the static loading conditions.

Originality/value

The response of novel hybrid composite reported has been explored for the first time in this paper. The outcome of experimental work revealed that hybridization offered lightweight structures with improved transverse impact toughness as compared to conventional composite.

Details

International Journal of Structural Integrity, vol. 11 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 April 2014

Nevin Hill and Mehrdad Haghi

– The purpose of this study is to explore the dependence of material properties and failure criteria for fused deposition modeling (FDM) polycarbonate on raster orientation.

1678

Abstract

Purpose

The purpose of this study is to explore the dependence of material properties and failure criteria for fused deposition modeling (FDM) polycarbonate on raster orientation.

Design/methodology/approach

Tension, hardness and density measurements were conducted on a range of specimens at raster angles between 0 and 90° at 15° intervals. Specimens were manufactured so the raster angle was constant throughout each specimen (no rotation between adjacent layers). The yield strength, tensile strength, per cent elongation, elastic modulus, hardness and density of the material were measured as a function of raster angle. The orientation dependence of the properties was then analyzed and used to motivate a failure mechanism map for the material.

Findings

The properties of the material were found to be highly orientation-dependent. The variations in mechanical properties were explained to first order using a failure mechanism map similar to those generated for fiber-reinforced composites.

Originality/value

In addition to providing valuable experimental data for FDM polycarbonate, the study proposes micro-mechanisms of failure that appear to explain and capture the angular variation of strength with raster orientation. The fact that analysis methods which have been used for composites appear to apply to FDM materials suggests rich areas for future exploration.

Details

Rapid Prototyping Journal, vol. 20 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 May 2015

Babruvahan Pandurang Ronge and Prashant Maruti Pawar

– This paper aims to focus on the stochastic analysis of composite rotor blades with matrix cracking in forward flight condition.

Abstract

Purpose

This paper aims to focus on the stochastic analysis of composite rotor blades with matrix cracking in forward flight condition.

Design/methodology/approach

The effect of matrix cracking and uncertainties are introduced to the aeroelastic analysis through the cross-sectional stiffness properties obtained using thin-walled beam formulation, which is based on a mixed force and a displacement method. Forward flight analysis is carried out using an aeroelastic analysis methodology developed for composite rotor blades based on the finite element method in space and time. The effects of matrix cracking are introduced through the changes in the extension, extension-bending and bending matrices of composites, whereas the effect of uncertainties are introduced through the stochastic properties obtained from previous experimental and analytical studies.

Findings

The stochastic behavior of helicopter hub loads, blade root forces and blade tip responses are obtained for different crack densities. Further, assuming the behavior of progressive damage in same beam is measurable as compared to its undamaged state, the stochastic behaviors of delta values of various measurements are studied. From the stochastic analysis of forward flight behavior of composite rotor blades at various matrix cracking levels, it is observed that the histograms of these behaviors get mixed due to uncertainties. This analysis brings out the parameters which can be used for effective prediction of matrix cracking level under various uncertainties.

Practical implications

The behavior is useful for the development of a realistic online matrix crack prediction system.

Originality/value

Instead of introducing the white noise in the simulated data for testing the robustness of damage prediction algorithm, a systematic approach is developed to model uncertainties along with damage in forward flight simulation.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 10 July 2021

Stephanie S. Luke, David Soares, Janaye V. Marshall, James Sheddden and Özgür Keleş

Fused filament fabrication of continuous-fiber-reinforced polymers is a promising technique to achieve customized high-performance composites. However, the off-axis tensile…

Abstract

Purpose

Fused filament fabrication of continuous-fiber-reinforced polymers is a promising technique to achieve customized high-performance composites. However, the off-axis tensile strength (TS) and Mode I fracture toughness of fused filament fabricated (FFFed) continuous-glass-fiber-reinforced (CGFR) nylon are unknown. The purpose of this paper is to investigate the mechanical and fracture behavior of FFFed CGFR nylon with various fiber content and off-axis fiber alignment.

Design/methodology/approach

Tensile tests were performed on FFFed CGFR-nylon with 9.5, 18.9 and 28.4 fiber vol. %. TS was tested with fiber orientations between 0 and 90 at 15 intervals. Double cantilever beam tests were performed to reveal the Mode I fracture toughness of FFFed composites.

Findings

TS increased with increasing fiber vol. % from 122 MPa at 9.5 vol. % to 291 MPa at 28 vol. %. FFFed nylon with a triangular infill resulted in 37 vol. % porosity and a TS of 12 MPa. Composite samples had 11–12 vol. % porosity. TS decreased by 78% from 291 MPa to 64 MPa for a change in fiber angle θ from 0 (parallel to the tensile stress) to 15. TS was between 27 and 17 MPa for 300 < θ < 900. Mode I fracture toughness of all the composites were lower than ∼332 J/m2.

Practical implications

Practical applications of FFFed continuous-fiber-reinforced (CFR) nylon should be limited to designs where tensile stresses align within 15 of the fiber orientation. Interlayer fracture toughness of FFFed CFR composites should be confirmed for product designs that operate under Mode I loading.

Originality/value

To the best of the authors’ knowledge, this is the first study showing the effects of fiber orientation on the mechanical behavior and effects of the fiber content on the Mode I fracture toughness of FFFed CGFR nylon.

Details

Rapid Prototyping Journal, vol. 27 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 October 2018

Victor Rizov

A delamination fracture analysis of two-dimensional functionally graded multilayered end-loaded split beam configuration with non-linear mechanical behaviour of material is…

52

Abstract

Purpose

A delamination fracture analysis of two-dimensional functionally graded multilayered end-loaded split beam configuration with non-linear mechanical behaviour of material is conducted. The beam is made of an arbitrary number of longitudinal layers. Perfect adhesion between layers is assumed. The material is two-dimensional functionally graded in the cross-section of each layer. Also, each layer has individual thickness and material properties. A delamination crack is located arbitrary along the beam height. The paper aims to discuss these issues.

Design/methodology/approach

The delamination fracture behaviour is investigated analytically in terms of the strain energy release rate by analysing the balance of the energy. An additional analysis of the delamination fracture is performed by applying the J-integral approach for verification.

Findings

The solutions derived are used to evaluate the effects of crack location, material gradients and material non-linearity on the delamination fracture behaviour of end-loaded split beam. The effect of material gradient on the distribution of the J-integral value along the crack front is elucidated too.

Originality/value

Delamination in the multilayered functionally graded end-loaded split beam exhibiting non-linear mechanical behaviour of the material is analysed assuming that the material property is distributed non-linearly in both thickness and width directions in each layer.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 16 August 2023

Hong Yuan, Jun Han, Huaqiang Lu, Junhui Li and Lan Zeng

Due to its inexpensive production costs, low stress concentration and maintenance-friendliness, the adhesive bonded pipe joint is frequently utilized for pipe connection. However…

Abstract

Purpose

Due to its inexpensive production costs, low stress concentration and maintenance-friendliness, the adhesive bonded pipe joint is frequently utilized for pipe connection. However, further theoretical analysis is needed to understand the debonding failure mechanism of such bonded pipe joints under axial tension.

Design/methodology/approach

In this study, based on the bi-linear cohesive zone model, the integrated closed-form solutions were derived by considering the axial stiffness ratio and failure stage to determine the relative interfacial slip, interfacial shear stress and relationship of tension–displacement in the bonded pipe joint.

Findings

Additionally, solutions for the critical bonded length and the ultimate load capacity were put forth. Besides, the numerical study was conducted to verify the theoretical solutions regarding the load–displacement relationship. The interfacial shear stress distribution at different failure stages was presented to understand the interfacial shear stress transmission and debonding process. The effect of bonded length on the ultimate load and ductility of pipe joints was also discussed.

Originality/value

The findings in this study can give a reference for the design of bonded pipe joints in their actual engineering applications.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 624