Search results

1 – 10 of 249
Article
Publication date: 13 August 2018

Aidy Ali, Wei Kuan Ng, Faiz Arifin, Kannan Rassiah, Faiz Othman, Shauqi Hazin and Megat Hamdan Megat Ahmad

The purpose of this paper is to investigate the fracture properties of hybrid woven bamboo (WB)/woven e-glass (EG) fiber composites with various layer arrangements. This paper…

Abstract

Purpose

The purpose of this paper is to investigate the fracture properties of hybrid woven bamboo (WB)/woven e-glass (EG) fiber composites with various layer arrangements. This paper utilized a specific type of bamboo species named Gigantochloa Scortechinii (Buluh Semantan).

Design/methodology/approach

In these experiments, unsaturated polyester, woven EG and WB fibers were prepared through the hand lay-up technique. The composite bamboo strips were prepared in 1.5 mm thickness. The strips are woven to make a single layer. The layer was then laminated into several thicknesses. The specimens were then characterized using compact tension fracture tests.

Findings

The fracture toughness of 12–14 MPa was obtained. These findings suggest that this hybrid bamboo composite provides superior fracture strength that is equivalent with steel alloy and is extremely a good alternative for reinforcing fibers to combat fracture failures of materials and structures.

Originality/value

In this paper, experimental determination of newly developed composite made of WB and woven EG is presented.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 23 September 2019

Reynaldo Bontuyan Inocian, Niño James P. Cuestas, Justin Keith L. Carin and Jhon Daryl E. Canoy

The purpose of this paper is to unveil the intricacies of bakat art of weaving; its origin; processes; uses; primary materials and principles used; the profile of the weavers; and…

47907

Abstract

Purpose

The purpose of this paper is to unveil the intricacies of bakat art of weaving; its origin; processes; uses; primary materials and principles used; the profile of the weavers; and its economic significations in the system of production and trade.

Design/methodology/approach

The study used a descriptive–qualitative design with 35 key informants using narrative analysis. The unstructured questions listed in the interview guide were used during the interview. Responses were recorded using an audio–video recorder. Coding sheets were used in the actual transcription of data.

Findings

The results showed dependency on the bakat art of weaving with the available resources found in the environment. Its economic significations showed a sustainable impact on the weavers’ life. The bakat art of weaving represented the values of resiliency to hardships, adaptability to changes, passion to craftsmanship, sense of community and family centeredness. Aspiring craftsmen and artists may enhance continuously their craftsmanship for sustainable development with government support through the creation of the School of Living Traditions.

Research limitations/implications

The study was limited to bakat art of weaving based on the responses of the key informants that were subjected to a point of saturation without sacrificing robustness, brevity, credibility and dependability.

Practical implications

Though the economic side of bakat art of weaving is sustainable within the village, it can create a powerful branding for cultural recognition that would transform the town of Barili into a creative weaving hub in Cebu. This creates the balance of the historical significance of bakat art of weaving and the tourism sector in promoting sustainable development.

Social implications

Bakat art rekindled the spirit of consciousness among the majority of the Cebuano public for preservation and promotion.

Originality/value

The study is original because this has not been published.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 9 no. 4
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 16 June 2021

Nachiappan Sukumar, Mekonnen Bayeleyegn and Sampath Aruna

Recently, composites have concerned considerable importance as a potential operational material. Lots of work have been carried out to enhance the mechanical properties of…

124

Abstract

Purpose

Recently, composites have concerned considerable importance as a potential operational material. Lots of work have been carried out to enhance the mechanical properties of composites. The main aim of this paper is to develop bamboo mat as reinforcing material with bagasse fiber as filler using epoxy resin matrix composite.

Design/methodology/approach

In this research, the effect of fiber surface treatments on mechanical properties of epoxy resin composite with bagasse as filler has been developed and investigated. The extracted bamboo fibers were treated with NaOH to improve the surface roughness fiber. Using treated and untreated bamboo fiber handwoven mat has been produced to be used as reinforcement and bagasse fiber has been converted into powder to be filled as filler. Composite material is fabricated using bamboo fiber and bagasse fiber as filler with epoxy resin as a matrix using hand layup technique.

Findings

Then, tensile, flexural and compressive strength and water absorption tests were conducted on sodium hydroxide treated and untreated fiber composites. The test results comparing with and without alkali treated composites show that there was significant change in their strength and water absorption properties on alkali treated fiber.

Originality/value

This study is an original research paper.

Details

Research Journal of Textile and Apparel, vol. 26 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 27 July 2012

Diana Grineviciute, Sigitas Krauledas and Matas V. Gutauskas

The purpose of this research is to perform instrumental comparison of hand parameters of knitted fabrics produced from different biodegradable fibres and to analyze peculiarities…

Abstract

Purpose

The purpose of this research is to perform instrumental comparison of hand parameters of knitted fabrics produced from different biodegradable fibres and to analyze peculiarities of hand parameters' extent influenced by fabric structure and chemical softening.

Design/methodology/approach

The hand of five types of different biodegradable fabrics was evaluated. Experiments were performed using a method based on the principle of specimen biaxial punching deformation when a disc‐shaped specimen is extracted through a round nozzle. The Influence of fabric weave (terry and plain jersey) and finishing (padding with the silicone softener “Belfasin SI”) on the fabric hand was investigated.

Findings

Investigations have shown that weave type and finishing significantly influenced fabric hand properties. It was also stated that even tenuous differences between fabric parameters could be obtained by one numeral value of complex hand rate Q.

Practical implications

Experiments have shown that KTU–Griff–Tester is a simple, reliable instrumental device suitable to obtain quantitative information about fabric mechanical properties. Evaluation of finishing influence on a fabric hand could be precisely expressed by one parameter Q.

Originality/value

In the present research quantitative evaluation of new fabrics from biodegradable fibres hand was performed. Comparison between new biodegradable and traditional cotton fabrics has shown that new biodegradable fibres which are generally used for underwear, sportswear and for medical application are characterized by soft hand, as a result a good affinity with skin.

Details

International Journal of Clothing Science and Technology, vol. 24 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 March 2021

Payman S. Ahmed, Basim M. Fadhil, Samir Mshir and Mohamed Salar

The main challenge in preparing body armor is achieving a high protection level by using lightweight materials with minimum cost.

Abstract

Purpose

The main challenge in preparing body armor is achieving a high protection level by using lightweight materials with minimum cost.

Design/methodology/approach

In this study, a three-hybrid multilayered armor system is prepared for protection against a ballistic impact wave. These armor systems consist of glass or ceramic tile as a front layer followed by three intermediate layers made of woven fiber reinforced polymer composites and a back layer made of either aluminum or polypropylene.

Findings

All armor systems were successful in impeding the projectile from perforating, that is materials selection played an important role in stopping the ballistic impact wave. Almost an identical ballistic behavior was recorded between the experimental and numerical simulation by using ANSYS AUTODYN which means that the simulation could be used in advance to reduce the time required for practical experiments and the cost of using materials in experimental tests will be lessened. The effect of projectile geometry also had been studied, and it showed a noticeable role in changing ballistic behavior.

Originality/value

The originality of this research is in using carbon and glass fiber which are woven together in addition to adding polypropylene layers in armor preparation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 August 2019

Giridharan R., Raatan V.S. and Jenarthanan M.P.

The purpose of this paper is to study the effects of fiber length and content on properties of E-glass and bamboo fiber reinforced epoxy resin matrices. Experiments are carried…

Abstract

Purpose

The purpose of this paper is to study the effects of fiber length and content on properties of E-glass and bamboo fiber reinforced epoxy resin matrices. Experiments are carried out as per ASTM standards to find the mechanical properties. Further, fractured surface of the specimen is subjected to morphological study.

Design/methodology/approach

Composite samples were prepared according to ASTM standards and were subjected to tensile and flexural loads. The fractured surfaces of the specimens were examined directly under scanning electron microscope.

Findings

From the experiment, it was found that the main factors that influence the properties of composite are fiber length and content. The optimum fiber length and weight ratio are 15 mm and 16 percent, respectively, for bamboo fiber/epoxy composite. Hence, the prediction of optimum fiber length and content becomes important, so that composite can be prepared with best mechanical properties. The investigation revealed the suitability of bamboo fiber as an effective reinforcement in epoxy matrix.

Practical implications

As bamboo fibers are biodegradable, recyclable, light weight and so on, their applications are numerous. They are widely used in automotive components, aerospace parts, sporting goods and building industry. With this scenario, the obtained result of bamboo fiber reinforced composites is not ignorable and could be of potential use, since it leads to harnessing of available natural fibers and their composites rather than synthetic fibers.

Originality/value

This work enlists the effect of fiber length and fiber content on tensile and flexural properties of bamboo fiber/epoxy composite, which has not been attempted so far.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 January 2024

Amanpreet Kaur Kharbanda, Kamal Raj Dasarathan, S.K. Sinha, T. Senthil Kumar and B. Senthil Kumar

Through this study, four different types of woven fabric structures were created by using cotton/banana blends with a 70:30 ratio by varying the weaving specifications. This study…

39

Abstract

Purpose

Through this study, four different types of woven fabric structures were created by using cotton/banana blends with a 70:30 ratio by varying the weaving specifications. This study aims to investigate the comfort and mechanical properties of these woven materials.

Design/methodology/approach

Taguchi L16 experimental design (5 factors and 4 levels) with response surface methodology tool was used to optimize mechanical and comfort characteristics. The yarn samples used in this study are cotton/banana with a blend ratio of 70:30. Fabric type (A), grams per square metre (GSM; B), yarn count (C), fabric thickness (D) and cloth cover factor (E) are the chosen process characteristics.

Findings

The highest tensile strength and tearing strength of the cotton/banana blended fabric samples were obtained as 326.3 N and 90.3 k.gf/cm, respectively. Similarly, the highest thermal conductivity and overall moisture management capacity values were found to be 0.6628 and 3.06 W/mK X10−4, respectively. The optimized process parameters for obtaining maximum mechanical properties were using canvas fabric structure, 182 GSM, 36s Ne yarn count, 0.48 mm fabric thickness and 23.5 cloth cover factor. Similarly, the optimized process parameters for obtaining maximum comfort properties were achieved using a twill fabric structure, 182 GSM, 32s Ne yarn count, 0.4 mm fabric thickness and 23 cloth cover factor.

Originality/value

In contrast to synthetic fabrics, banana fibre and its blended materials are significant ecological solutions for apparel and functional clothing. Products made from banana fibre are a sustainable and green alternative to conventional fabrics. Banana fibre obtained from the pseudostem of the plant has an appearance similar to ramie and bamboo fibres. Numerous studies showed that banana fibre could absorb significant moisture and be spun into yarn through ring and rotor spinning technology. On the other hand, this fibre can be easily combined with cotton, jute, wool and synthetic fibre. The present utilization of pseudostem of banana plant fibre is very minimal. This type of research improves the usability of bananas their blended fabrics as apparel and functional wear.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 June 2023

Heba Tolla El Sayed Abo El Naga and Manar Yahia Ismail Abd El-Aziz

Synthetic materials have many drawbacks in high-performance garments because they absorb less moisture and cause allergies to sensitive individuals. Cotton materials cannot…

Abstract

Purpose

Synthetic materials have many drawbacks in high-performance garments because they absorb less moisture and cause allergies to sensitive individuals. Cotton materials cannot satisfy all the requirements and cannot provide the required high performance. This study aims to use eco-friendly materials with a common structure to analyse their suitability for high-performance garment application.

Design/methodology/approach

This study used two eco-friendly yarns (bamboo, modal and bamboo: modal 50:50) and yarns per needle (two- and four-ply yarns). with a single jersey knit construction and gauge of 7. The physical, mechanical, appearance, comfort, thermal and ultraviolet protection factor (UPF) protection characteristics were evaluated using 15 tests.

Findings

The produced knitted fabrics showed high performance for use as garments with physical, mechanical, appearance, comfort, thermal and UPF protection characteristics that were achieved, tested and analysed. The highest-achieved samples with a good UPF (<15) were made from bamboo material, which has other high-performance characteristics such as antibacterial characteristics, a soft surface, thermal insulation and others.

Research limitations/implications

The single jersey structure was used for producing fabrics as it is the common structure in the garment. Also, only gauge 7 was used for its economics and ease of production.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Book part
Publication date: 1 March 2021

Anang Muftiadi, Rivani Rivani and Dian Fordian

This study aims to identify the trend and sources of inefficiency of the construction sector in Indonesia causes expensive infrastructure development. The basic model was built on…

Abstract

This study aims to identify the trend and sources of inefficiency of the construction sector in Indonesia causes expensive infrastructure development. The basic model was built on the basis of the intermediate input coefficients of Input–Output Table. The sources of inefficiency were metal goods industry, mining and other quarries, the non-metal goods and minerals industry, the cement industry, petroleum refining, building and business services companies, wood, land transportation, manufacture of rubber and plastic goods, financial institutions and machinery, electrical equipment and equipment industries. Indonesia needs a strong upstream industry on raw and supporting materials of iron-steel, wood and cement.

Details

Recent Developments in Asian Economics International Symposia in Economic Theory and Econometrics
Type: Book
ISBN: 978-1-83867-359-8

Keywords

Article
Publication date: 9 February 2021

Brigita Kalendraite, Jolita Krisciunaite and Daiva Mikucioniene

The purpose of this research was to find the influence of sublimation process on air permeability and water absorption dynamics of knitted and woven polyester-based fabrics.

Abstract

Purpose

The purpose of this research was to find the influence of sublimation process on air permeability and water absorption dynamics of knitted and woven polyester-based fabrics.

Design/methodology/approach

Three different sublimation designs were prepared and applied (keeping the same sublimation parameters) for eight variants of knitted and four variants of woven polyester-based fabrics. Air permeability and water absorption dynamics during 180s period was measured and compared before and after the sublimation process.

Findings

According to the obtained results, high temperature and pressure applied in sublimation process have influence on the porosity and air permeability of knitted fabrics; however, the influence on water absorption dynamics is minimal. Sublimation design dos not have any influence on the mentioned properties.

Originality/value

The obtained results of the sublimation process influence on air permeability and water absorption dynamics of knitted and woven polyester-based fabrics will help to understand how sublimation process can affect comfort properties of textile fabrics.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 249