Search results

1 – 10 of over 5000
Article
Publication date: 7 May 2021

Mohd Fadzli Bin Abdollah, Hilmi Amiruddin and Mohamad Jabbar Nordin

This study aims to scrutinise the impact of fibre length and its composition on the tribological attributes of oil palm fibre (OPF) polymeric composite as an alternative…

Abstract

Purpose

This study aims to scrutinise the impact of fibre length and its composition on the tribological attributes of oil palm fibre (OPF) polymeric composite as an alternative brake friction material.

Design/methodology/approach

Fabrication of the sample was conducted by using a hot-compression method. The tribological test was carried out by deploying a ball-on-disk tribometer. Analysis of the data was then done by using the Taguchi approach as well as analysis of variance.

Findings

The results indicated that all design variables (fibre composition, length and treatment) are not statistically significant, as all p-values are greater than 0.05. Remarkably, irrespective of the fibre treatment, the wear rate and coefficient of friction (COF) distribution suggested that a smaller fibre length with a high fibre composition might enhance the composite’s tribological performance with COF of 0.4 and wear rate below than 1 × 10–9 mm3/Nm. The predominant wear mechanisms were identified as micro-cracks, fine grooves and fibre debonding.

Research limitations/implications

In this study, all-inclusive scrutiny needs to be carried out for further exploration.

Originality/value

The main contribution and novelty of this study are opening a new perspective on the formulation of new substances from bio-based material (i.e. OPF) that possess superior tribological characteristics for friction-based applications.

Details

Industrial Lubrication and Tribology, vol. 73 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 2000

G. Zak, M. Haberer, C.B. Park and B. Benhabib

As a way of enhancing the mechanical properties of photopolymer‐based parts produced by layered manufacturing (LM) techniques, the use of short glass‐fibre reinforcements…

5506

Abstract

As a way of enhancing the mechanical properties of photopolymer‐based parts produced by layered manufacturing (LM) techniques, the use of short glass‐fibre reinforcements has been recently explored in the literature. This paper proposes a novel methodology that utilizes a modified rule‐of‐mixtures model for the prediction of the mechanical properties of such layered composites. The prediction process employs empirical data on (i) the fibre‐matrix interface, (ii) the fibres’ geometrical arrangement within the specimens (i.e. fibre‐orientation distribution), and (iii) the fibrelength distribution. The effects of the fibre‐orientation and fibrelength distributions are accounted for in the prediction model by the fibrelength‐correction and orientation‐efficiency factors. Comparison of extensive experimental results and model‐based predictions of mechanical properties of layered composites demonstrated the effectiveness of the proposed estimation methodology.

Details

Rapid Prototyping Journal, vol. 6 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 August 2015

Surinder Tandon

Inter-fibre cohesion is regarded as an important property of assemblies, such as slivers, made of wool or any other fibres, with respect to the processing in carding…

Abstract

Inter-fibre cohesion is regarded as an important property of assemblies, such as slivers, made of wool or any other fibres, with respect to the processing in carding, drawing (gilling) and spinning. In this paper, the results of the multiple regression analyses, and their validation, are presented to show that a strong relationship exists between the sliver cohesion (measured as sliver tenacity and sliver specific energy-to-break in a long-gauge tensile test) and a combination of the standard wool properties, such as bulk, mean fibre length (Barbe), mean fibre diameter and medullation content, used for the objective blend specification of New Zealand wools for marketing and processing.

Details

Research Journal of Textile and Apparel, vol. 19 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 May 1994

Xiaoming Tao

Presents a mathematical treatment of the large‐scale bending behaviour of multi‐ply yarn. Based on the assumptions that: each individual fibre in the yarn has the form of…

296

Abstract

Presents a mathematical treatment of the large‐scale bending behaviour of multi‐ply yarn. Based on the assumptions that: each individual fibre in the yarn has the form of a doubly‐wound helix; each fibre is an inextensible slender rod; and interaction between fibres is ignored. The yarn‐bending rigidity is calculated as an average rigidity of an assembly of coaxial helices. There is good agreement between the predicted and measured values of yarn bending rigidity for a wool worsted knitting yarn. Also predicts the position, curvature and twist components as well as the strain energy of the deformed fibre.

Details

International Journal of Clothing Science and Technology, vol. 6 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 November 2021

Merve Engin, Sinan Sönmez and Mustafa Batuhan Kurt

The purpose of this paper is to investigate the influences of fibre lengths and a given range of paper grammages on the fundamental properties of unprinted and printed…

Abstract

Purpose

The purpose of this paper is to investigate the influences of fibre lengths and a given range of paper grammages on the fundamental properties of unprinted and printed papers by using mineral oil-based offset printing inks and also evaluate these results in terms of printing and tensile characteristics.

Design/methodology/approach

A design research approach has been based on the production of various laboratory handmade papers and their printing process with mineral oil-based offset printing inks. The analysis of mechanical and structural tests results of the unprinted and the printed papers have been evaluated.

Findings

This study is confirmed that the mineral oil-based offset printing inks can be easily applied to the surface of papers having different grammages and pulp contents. An increase was observed in the tensile index values of the papers with the printing process, and these increases were more evident (about 80%) particularly in low grammage papers having high short fibre content.

Originality/value

The originality of this work is based on understanding and comparing the effects of grammage and the effect of pulp contents (having long and short fibre) on tensile characteristics of printed and unprinted handsheets.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 June 2022

Chethan Savandaiah, Julia Maurer, Bernhard Plank, Georg Steinbichler and Janak Sapkota

3D printing techniques such as material extrusion based additive manufacturing provide a promising and cost effective manufacturing technique. However, the main challenges…

Abstract

Purpose

3D printing techniques such as material extrusion based additive manufacturing provide a promising and cost effective manufacturing technique. However, the main challenges in industrial applications remain with the quality assurance of mass produced parts. The purpose of this study is to investigate the effect of compression moulding as a rapid consolidation method for 3D printed composites, with an aim to reduce voids and defects and thus improving quality assurance of printed parts.

Design/methodology/approach

To develop an understanding of the inherent voids in 3D parts and the influence on mechanical properties, material extrusion additively manufactured (MEX) parts were post consolidated by using compression moulding at elevated temperature.

Findings

This study comparatively investigates the influence of carbon fibre length, undergoing process induced scission during filament extrusion and IM and its impact on void content and mechanical properties. It was found that the post consolidation significantly reduced the voids and the mechanical properties were significantly improved compared to the nonconsolidated material extrusion additively manufactured parts, reaching values similar to those of the IM parts.

Practical implications

Adaptation of extrusion-based additive manufacturing with hybridisation of reliable compression moulding technology transcends into series production of highly adaptive end user applications, such as drones, advanced sports prosthetics, competitive cycling and more.

Originality/value

This paper adds to the current understanding of 3D printing and provides a step towards quality assurance for mass production.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 September 1996

G. Zak, A.Y.F. Chan, C.B. Park and B. Benhabib

Refers to how the mechanical properties of polymer‐based composite objects produced via rapid layered fabrication methods can be improved significantly using short…

1573

Abstract

Refers to how the mechanical properties of polymer‐based composite objects produced via rapid layered fabrication methods can be improved significantly using short discontinuous fibres as reinforcements. Notes in this context, that the viscosity of the uncured fibre‐photopolymer composite liquids affects the raw‐material handling, the layer formation and the draining operations. Assesses the effects of aspect ratio, surface coating and volume fraction of short glass fibres on the viscosity of the fibre‐photopolymer composite liquids. Based on extensive experimentation and analysis, concludes that the shear viscosity of the composite liquids increases with increasing fibre‐volume fraction, showing that this effect is more pronounced at low shear rates than at high shear rates. Reveals, similarly, that the aspect ratio of the dispersed fibres has a stronger effect on the increase of viscosity at low shear rates and that the surface coating of the dispersed fibres also affects the viscosity of the composite liquids.

Details

Rapid Prototyping Journal, vol. 2 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 June 2021

Gobi Nallathambi

The purpose of this paper is to study the influence of fibre properties on filtration behavior. Air pollution is a major threat to human beings due to industrialization…

Abstract

Purpose

The purpose of this paper is to study the influence of fibre properties on filtration behavior. Air pollution is a major threat to human beings due to industrialization and urbanization. Among various particles in the atmospheric air, PM 2.5 causes various respiratory problems to human beings and also causes premature engine wear. The primary importance for the filters is higher filtration efficiency with lower pressure drop.

Design/methodology/approach

In this research, nonwoven filters were developed with different diameters of polyester fibres such as 0.8d, 1.2d and 6d fibres and different proportions of fibres were used. The Kuwabara cell model was used to derive certain parameters and its effects were analysed. The effect of basis length, solid volume fraction and porosity on filtration behavior was discussed in detail.

Findings

The filtration efficiency is higher for particle size from 1–3 µm, when different layers of polyester fibres are used with coarser fibres as the top layer and finer as the bottom layer. The filtration performance is better for layered nonwoven than unimodal nonwoven. The higher proportion of micro-denier fibres results in higher filtration efficiency with higher pressure drop.

Research limitations/implications

The proposed research is more suitable for the particle size of more than 1 µm because of the fibre diameters and its achievable porosity. The filtration efficiency can be increased further by increasing the mass per unit area, which also increases the pressure and is not recommended.

Originality/value

The effect of triple-layers with different diameters of fibres on filtration was analysed. Due to the variation in diameters of fibres in different layers, the filtration performance varies.

Details

Research Journal of Textile and Apparel, vol. 26 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 23 August 2022

Naveen Revanna and Charles K.S. Moy

A study on the mechanical characteristics of cementitious mortar reinforced with basalt fibres at ambient and elevated temperatures was carried out. To investigate their…

Abstract

Purpose

A study on the mechanical characteristics of cementitious mortar reinforced with basalt fibres at ambient and elevated temperatures was carried out. To investigate their effect, chopped basalt fibres with varying percentages were added to the cement mortar.

Design/methodology/approach

All the specimens were heated using a muffle furnace. Flexural strength and Compressive strength tests were performed, while monitoring the moisture loss to evaluate the performance of basalt fibre reinforced cementitious mortars at elevated temperatures.

Findings

From the study, it is clear that basalt fibres can be used to reinforce mortar as the fibres remain unaffected up to 500 °C. Minimal increases in flexural strengths and compressive strengths were measured with the addition of basalt fibres at both ambient and elevated temperatures. SEM pictures revealed fibre matrix interaction/degradation at different temperatures.

Originality/value

The current study shows the potential of basalt fibre addition in mortar as a reinforcement mechanism at elevated temperatures and provides experimental quantifiable mechanical performances of different fibre percentage addition.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 March 1985

Roger P. Main

The use of fibre optic sensors is a relatively new development but the future applications are enormous

Abstract

The use of fibre optic sensors is a relatively new development but the future applications are enormous

Details

Sensor Review, vol. 5 no. 3
Type: Research Article
ISSN: 0260-2288

1 – 10 of over 5000