Search results

1 – 10 of 166
Article
Publication date: 30 October 2023

Muhammad Adnan Hasnain, Hassaan Malik, Muhammad Mujtaba Asad and Fahad Sherwani

The purpose of the study is to classify the radiographic images into three categories such as fillings, cavity and implant to identify dental diseases because dental disease is a…

Abstract

Purpose

The purpose of the study is to classify the radiographic images into three categories such as fillings, cavity and implant to identify dental diseases because dental disease is a very common dental health problem for all people. The detection of dental issues and the selection of the most suitable method of treatment are both determined by the results of a radiological examination. Dental x-rays provide important information about the insides of teeth and their surrounding cells, which helps dentists detect dental issues that are not immediately visible. The analysis of dental x-rays, which is typically done by dentists, is a time-consuming process that can become an error-prone technique due to the wide variations in the structure of teeth and the dentist's lack of expertise. The workload of a dental professional and the chance of misinterpretation can be decreased by the availability of such a system, which can interpret the result of an x-ray automatically.

Design/methodology/approach

This study uses deep learning (DL) models to identify dental diseases in order to tackle this issue. Four different DL models, such as ResNet-101, Xception, DenseNet-201 and EfficientNet-B0, were evaluated in order to determine which one would be the most useful for the detection of dental diseases (such as fillings, cavity and implant).

Findings

Loss and accuracy curves have been used to analyze the model. However, the EfficientNet-B0 model performed better compared to Xception, DenseNet-201 and ResNet-101. The accuracy, recall, F1-score and AUC values for this model were 98.91, 98.91, 98.74 and 99.98%, respectively. The accuracy rates for the Xception, ResNet-101 and DenseNet-201 are 96.74, 93.48 and 95.65%, respectively.

Practical implications

The present study can benefit dentists from using the DL model to more accurately diagnose dental problems.

Originality/value

This study is conducted to evaluate dental diseases using Convolutional neural network (CNN) techniques to assist dentists in selecting the most effective technique for a particular clinical condition.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 24 March 2022

Elavaar Kuzhali S. and Pushpa M.K.

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150…

Abstract

Purpose

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The COVID-19 diagnosis is required to detect at the beginning stage and special attention should be given to them. The fastest way to detect the COVID-19 infected patients is detecting through radiology and radiography images. The few early studies describe the particular abnormalities of the infected patients in the chest radiograms. Even though some of the challenges occur in concluding the viral infection traces in X-ray images, the convolutional neural network (CNN) can determine the patterns of data between the normal and infected X-rays that increase the detection rate. Therefore, the researchers are focusing on developing a deep learning-based detection model.

Design/methodology/approach

The main intention of this proposal is to develop the enhanced lung segmentation and classification of diagnosing the COVID-19. The main processes of the proposed model are image pre-processing, lung segmentation and deep classification. Initially, the image enhancement is performed by contrast enhancement and filtering approaches. Once the image is pre-processed, the optimal lung segmentation is done by the adaptive fuzzy-based region growing (AFRG) technique, in which the constant function for fusion is optimized by the modified deer hunting optimization algorithm (M-DHOA). Further, a well-performing deep learning algorithm termed adaptive CNN (A-CNN) is adopted for performing the classification, in which the hidden neurons are tuned by the proposed DHOA to enhance the detection accuracy. The simulation results illustrate that the proposed model has more possibilities to increase the COVID-19 testing methods on the publicly available data sets.

Findings

From the experimental analysis, the accuracy of the proposed M-DHOA–CNN was 5.84%, 5.23%, 6.25% and 8.33% superior to recurrent neural network, neural networks, support vector machine and K-nearest neighbor, respectively. Thus, the segmentation and classification performance of the developed COVID-19 diagnosis by AFRG and A-CNN has outperformed the existing techniques.

Originality/value

This paper adopts the latest optimization algorithm called M-DHOA to improve the performance of lung segmentation and classification in COVID-19 diagnosis using adaptive K-means with region growing fusion and A-CNN. To the best of the authors’ knowledge, this is the first work that uses M-DHOA for improved segmentation and classification steps for increasing the convergence rate of diagnosis.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 14 February 2024

Parsa Aghaei and Sara Bayramzadeh

This study aims to investigate how trauma team members perceive technological equipment and tools in the trauma room (TR) environment and to identify how the technological…

Abstract

Purpose

This study aims to investigate how trauma team members perceive technological equipment and tools in the trauma room (TR) environment and to identify how the technological equipment could be optimized in relation to the TR’s space.

Design/methodology/approach

A total of 21 focus group sessions were conducted with 69 trauma team members, all of whom worked in Level I TRs from six teaching hospitals in the USA.

Findings

The collected data was analyzed and categorized into three parent themes: imaging equipment, assistive devices and room features. The results of the study suggest that trauma team members place high importance on the availability and versatility of the technological equipment in the TR environment. Although CT scans are a usual procedure necessity in TRs, few facilities were optimized for easy access to CT-scanners for the TR. The implementation of cameras and screens was suggested as an improvement to accommodate situational awareness. Rapid sharing of data, such as imaging results, was highly sought after. Unorthodox approaches, such as the use of automatic doors, were associated with slowing down the course of actions.

Practical implications

This study provides health-care designers with the knowledge they need to make informed decisions when designing TRs. It will cover key considerations such as room layout, equipment selection, lighting and controls. Implementing the strategies will help minimize negative patient outcomes.

Originality/value

Level I TRs are a critical element of emergency departments and designing them correctly can significantly impact patient outcomes. However, designing a TR can be a complex process that requires careful consideration of various factors, including patient safety, workflow efficiency, equipment placement and infection control. This study suggests multiple considerations when designing TRs.

Details

Facilities , vol. 42 no. 5/6
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 15 December 2023

Muhammad Arif Mahmood, Chioibasu Diana, Uzair Sajjad, Sabin Mihai, Ion Tiseanu and Andrei C. Popescu

Porosity is a commonly analyzed defect in the laser-based additive manufacturing processes owing to the enormous thermal gradient caused by repeated melting and solidification…

Abstract

Purpose

Porosity is a commonly analyzed defect in the laser-based additive manufacturing processes owing to the enormous thermal gradient caused by repeated melting and solidification. Currently, the porosity estimation is limited to powder bed fusion. The porosity estimation needs to be explored in the laser melting deposition (LMD) process, particularly analytical models that provide cost- and time-effective solutions compared to finite element analysis. For this purpose, this study aims to formulate two mathematical models for deposited layer dimensions and corresponding porosity in the LMD process.

Design/methodology/approach

In this study, analytical models have been proposed. Initially, deposited layer dimensions, including layer height, width and depth, were calculated based on the operating parameters. These outputs were introduced in the second model to estimate the part porosity. The models were validated with experimental data for Ti6Al4V depositions on Ti6Al4V substrate. A calibration curve (CC) was also developed for Ti6Al4V material and characterized using X-ray computed tomography. The models were also validated with the experimental results adopted from literature. The validated models were linked with the deep neural network (DNN) for its training and testing using a total of 6,703 computations with 1,500 iterations. Here, laser power, laser scanning speed and powder feeding rate were selected inputs, whereas porosity was set as an output.

Findings

The computations indicate that owing to the simultaneous inclusion of powder particulates, the powder elements use a substantial percentage of the laser beam energy for their melting, resulting in laser beam energy attenuation and reducing thermal value at the substrate. The primary operating parameters are directly correlated with the number of layers and total height in CC. Through X-ray computed tomography analyses, the number of layers showed a straightforward correlation with mean sphericity, while a converse relation was identified with the number, mean volume and mean diameter of pores. DNN and analytical models showed 2%–3% and 7%–9% mean absolute deviations, respectively, compared to the experimental results.

Originality/value

This research provides a unique solution for LMD porosity estimation by linking the developed analytical computational models with artificial neural networking. The presented framework predicts the porosity in the LMD-ed parts efficiently.

Article
Publication date: 23 February 2024

Guangwei Liang, Zhiming Gao, Cheng-Man Deng and Wenbin Hu

The purpose of this study is to reveal the effect of nano-Al2O3 particle addition on the nucleation/growth kinetics, microhardness, wear resistance and corrosion resistance of…

Abstract

Purpose

The purpose of this study is to reveal the effect of nano-Al2O3 particle addition on the nucleation/growth kinetics, microhardness, wear resistance and corrosion resistance of Co–P–xAl2O3 nanocomposite plating.

Design/methodology/approach

The kinetics and properties of Co–P–xAl2O3 nanocomposite plating prepared by electroplating were investigated by electrochemical measurements, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Vickers microhardness measurement, SRV5 friction and wear tester and atomic force microscopy.

Findings

A 12 g/L nano-Al2O3 addition in the plating solution can transform the nucleation/growth kinetics of the plating from the 3D progressive model to the 3D instantaneous model. The microhardness of the plating increased with the increase of nano-Al2O3 content in plating. The wear resistance of the plating did not adhere strictly to Archard’s law. An even and denser corrosion product film was generated due to the finer grains, with a high corrosion resistance.

Originality/value

The effect of different nano-Al2O3 addition on the nucleation/growth kinetics and properties of Co–P–xAl2O3 nanocomposite plating was investigated, and an anticorrosion mechanism of Co–P–xAl2O3 nanocomposite plating was proposed.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 19 September 2023

Andromeda Dwi Laksono, Chih-Ming Chen and Yee-Wen Yen

The purpose of this study was to examine the influence of adding a small amount of Ti to a Cu-based alloy, specifically the commercial Hyper Titanium Copper alloy (C1990 HP)…

Abstract

Purpose

The purpose of this study was to examine the influence of adding a small amount of Ti to a Cu-based alloy, specifically the commercial Hyper Titanium Copper alloy (C1990 HP), which contains Cu-3.28 wt.% Ti, on its interfacial reaction with Sn-9.0 wt.% Zn (SnZn) solder, using the liquid/solid reaction couple technique.

Design/methodology/approach

The SnZn/C1990 HP couples were subjected to a reaction temperature of 240–270°C for a duration of 0.5–5 h. The resulting reaction couple was characterized using a scanning electron microscope, energy dispersive spectrometer, electron probe microanalyzer and X-ray diffractometer.

Findings

It was observed that the scallop-shaped CuZn5 and planar Cu5Zn8 phases were formed in almost all SnZn/C1990 HP couples. With increased reaction duration and temperature, the Cu-rich intermetallic compound (IMC)-Cu5Zn8 phase became a dominant IMC formed at the interface. The total thickness of the IMCs was increased with the increase in the reaction duration and temperature. The IMC growth obeyed the parabolic law, and the IMC growth mechanism was diffusion controlled. The activation energy of the SnZn/C1990 HP couple was 64.71 kJ/mol.

Originality/value

This article presents an analysis of the IMC thickness in each sample using ImageJ software, followed by kinetic analysis using Origin software at various reaction temperatures of SnZn/C1990 HP in liquid/solid couples. The study also includes detailed reports on the morphology, interface composition and X-ray diffraction analysis, as well as the activation energy. The findings can serve as a valuable reference for electronic packaging companies that utilize C1990 HP substrates.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 7 December 2021

Santosh Kumar Karri, Markandeya Raju Ponnada and Lakshmi Veerni

One of the sources for the increase in the carbon footprint on the earth is the manufacturing of cement, which causes a severer environmental impact. Abundant research is going on…

Abstract

Purpose

One of the sources for the increase in the carbon footprint on the earth is the manufacturing of cement, which causes a severer environmental impact. Abundant research is going on to diminish CO2 content in the atmosphere by appropriate utilization of waste by-products of industries. Alkali-activated slag concrete (AASC) is an innovative green new concrete made by complete replacement of cement various supplementary cementitious raw materials. Concrete is a versatile material used in different fields of structures, so it is very important to study the durability in different exposures along with the strength. The purpose of this paper is to study the performance of AASC by incorporating quartz sand as fine aggregate under different exposure conditions.

Design/methodology/approach

The materials for this innovative AASC are selected based on preliminary studies and literature surveys. Based on numerous trials a better performance mix proportion of AASC with quartz sand is developed with 1:2:4 mix proportion, 0.8 alkali Binder ratio, 19 M of NaOH and 50% concentration of Na2SiO3. Subsequently, AASC cubes are prepared and exposed for 3, 7, 14, 28, 56, 90, 112, 180, 252 and 365 days in ambient, acid, alkaline, sulfate, chloride and seawater and tested for compressive strength. In addition, to study the microstructural characteristics, scanning electron microscope (SEM), energy dispersive X-ray analysis and X-ray diffraction analysis was also performed.

Findings

Long-term performance of AASC developed with quartz sand is very good in the ambient, alkaline environment of 5% NaOH and seawater with the highest compressive strength values of 51.8, 50.83 and 64.46, respectively. A decrease in compressive strengths was observed after the age of 14, 56 and 112 days for acid, chloride and sulfate exposure conditions, respectively. SEM image shows a denser microstructure of AASC matrix for ambient, alkaline of 5% NaOH and seawater.

Research limitations/implications

The proposed AASC is prepared with a mix proportion of 1:2:4, so the other proportions of AASC need to verify. In general plain, AASC is not used in practice except in few applications, in this work the effect of reinforced AASC is not checked. The real environmental exposure in fields may not create for AASC, as it was tested in different exposure conditions in the laboratory.

Practical implications

The developed AASC is recommended in practical applications where early strength is required, where the climate is hot, where water is scarce for curing, offshore and onshore constructions exposed to the marine environment and alkaline environment industries like breweries, distilleries and sewage treatment plants. As AASC is recommended for ambient air and in other exposures, its implementation as a construction material will reduce the carbon footprint.

Originality/value

The developed AASC mix proportion 1:2:4 is an economical mix, because of low binder content, but it exhibits a higher early age compressive strength value of 45.6 MPa at the age of 3 days. The compressive strength increases linearly with age from 3 to 365 days when exposed to seawater and ambient air. The performance of AASC is very good in the ambient, alkaline environment and seawater compared to other exposure conditions.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 24 April 2024

Salwa Moustafa Amer Mahmoud, Tarek Hamdy, Mohamed Fares, Wissam Ayman, Shrouk Muhamed, Aya Abdel Khaliq and Lilian Salah

This paper aims to investigate the ability of traditional biopolymers, such as funori or the nanoscale form of cellulose nanocrystals, to consolidate fragile paper and preserve it…

Abstract

Purpose

This paper aims to investigate the ability of traditional biopolymers, such as funori or the nanoscale form of cellulose nanocrystals, to consolidate fragile paper and preserve it for as long as possible.

Design/methodology/approach

Degraded papers dating back two centuries were separated into paper samples for consolidation processes. Funori – a marine spleen – was used as a traditional consolidation material and a mixture with ZnO NPs compared with modern materials, such as cellulose nanocrystals. The samples were aged for 25 years, examinations and analyses were performed using scanning electron microscopy and color change was assessed using the CIELAB system, X-ray diffraction and Fourier-transform infrared spectroscopy.

Findings

According to the results, using traditional materials to consolidate damage, such as funori, after aging resulted in glossiness on the surface, a color change and increased water content and oxidation. Furthermore, samples treated with a mixture of ZnO NPs and funori revealed that the mixture improved the sample properties and increased the degree of crystallization. Cellulose nanocrystals improved the surface, filled gaps, formed bridges between the fibers and acted as a protector from aging effects.

Originality/value

This paper highlights the ability of nanomaterials to enhance the properties of materials as additives and treat the paper manuscripts from weaknesses.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 April 2024

Amina Dinari, Tarek Benameur and Fuad Khoshnaw

The research aims to investigate the impact of thermo-mechanical aging on SBR under cyclic-loading. By conducting experimental analyses and developing a 3D finite element analysis…

Abstract

Purpose

The research aims to investigate the impact of thermo-mechanical aging on SBR under cyclic-loading. By conducting experimental analyses and developing a 3D finite element analysis (FEA) model, it seeks to understand chemical and physical changes during aging processes. This research provides insights into nonlinear mechanical behavior, stress softening and microstructural alterations in SBR compounds, improving material performance and guiding future strategies.

Design/methodology/approach

This study combines experimental analyses, including cyclic tensile loading, attenuated total reflection (ATR), spectroscopy and energy-dispersive X-ray spectroscopy (EDS) line scans, to investigate the effects of thermo-mechanical aging (TMA) on carbon-black (CB) reinforced styrene-butadiene rubber (SBR). It employs a 3D FEA model using the Abaqus/Implicit code to comprehend the nonlinear behavior and stress softening response, offering a holistic understanding of aging processes and mechanical behavior under cyclic-loading.

Findings

This study reveals significant insights into SBR behavior during thermo-mechanical aging. Findings include surface roughness variations, chemical alterations and microstructural changes. Notably, a partial recovery of stiffness was observed as a function of CB volume fraction. The developed 3D FEA model accurately depicts nonlinear behavior, stress softening and strain fields around CB particles in unstressed states, predicting hysteresis and energy dissipation in aged SBRs.

Originality/value

This research offers novel insights by comprehensively investigating the impact of thermo-mechanical aging on CB-reinforced-SBR. The fusion of experimental techniques with FEA simulations reveals time-dependent mechanical behavior and microstructural changes in SBR materials. The model serves as a valuable tool for predicting material responses under various conditions, advancing the design and engineering of SBR-based products across industries.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 26 February 2024

Wenhai Tan, Yichen Zhang, Yuhao Song, Yanbo Ma, Chao Zhao and Youfeng Zhang

Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion…

24

Abstract

Purpose

Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion batteries due to their high theoretical capacity, simple synthesis, low cost and environmental friendliness. Many studies were concentrated on the synthesis, design and doping of cathodes, but the effect of process parameters on morphology and performance was rarely reported.

Design/methodology/approach

Herein, Co3O4 cathode material based on carbon cloth (Co3O4/CC) was prepared by different temperatures hydrothermal synthesis method. The temperatures of hydrothermal reaction are 100°C, 120°C, 130°C and 140°C, respectively. The influence of temperatures on the microstructures of the cathodes and electrochemical performance of zinc ion batteries were investigated by X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry curve, electrochemical charging and discharging behavior and electrochemical impedance spectroscopy test.

Findings

The results show that the Co3O4/CC material synthesized at 120°C has good performance. Co3O4/CC nanowire has a uniform distribution, regular surface and small size on carbon cloth. The zinc-ion battery has excellent rate performance and low reaction resistance. In the voltage range of 0.01–2.2 V, when the current density is 1 A/g, the specific capacity of the battery is 108.2 mAh/g for the first discharge and the specific capacity of the battery is 142.6 mAh/g after 60 charge and discharge cycles.

Originality/value

The study aims to investigate the effect of process parameters on the performance of zinc-ion batteries systematically and optimized applicable reaction temperature.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 166