Search results

1 – 10 of over 1000
To view the access options for this content please click here
Article
Publication date: 6 November 2018

Umi Zalilah Mohamad Zaidi, A.R. Bushroa, Reza Rahbari Ghahnavyeh and Reza Mahmoodian

This paper aims to determine the crystallite size and microstrain values of AgSiN thin films using potential approach called approximation method. This method can be used…

Abstract

Purpose

This paper aims to determine the crystallite size and microstrain values of AgSiN thin films using potential approach called approximation method. This method can be used as a replacement for other determination methods such as Williamson-Hall (W-H) plot and Warren-Averbach analysis.

Design/methodology/approach

The monolayer AgSiN thin films on Ti6Al4V alloy were fabricated using magnetron sputtering technique. To evaluate the crystallite size and microstrain values, the thin films were deposited under different bias voltage (−75, −150 and −200 V). X-ray diffraction (XRD) broadening profile along with approximation method were used to determine the crystallite size and microstrain values. The reliability of the method was proved by comparing it with scanning electron microscopy graph and W-H plot method. The second parameters’ microstrain obtained was used to project the residual stress present in the thin films. Further discussion on the thin films was done by relating the residual stress with the adhesion strength and the thickness of the films.

Findings

XRD-approximation method results revealed that the crystallite size values obtained from the method were in a good agreement when it is compared with Scherer formula and W-H method. Meanwhile, the calculations for thin films corresponding residual stresses were correlated well with scratch adhesion critical loads with the lowest residual stress was noted for sample with lowest microstrain and has thickest thickness among the three samples.

Practical implications

The fabricated thin films were intended to be used in antibacterial applications.

Originality/value

Up to the knowledge from literature review, there are no reports on depositing AgSiN on Ti6Al4V alloy via magnetron sputtering to elucidate the crystallite size and microstrain properties using the approximation method.

Details

Pigment & Resin Technology, vol. 48 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article
Publication date: 10 May 2011

Ng Sha Shiong, Ching Chin Guan, Zainuriah Hassan and Haslan Abu Hassan

The purpose of this paper is to report the structural properties of AlxGa1−xN (0≤x≤1) grown on sapphire substrate by means of X‐ray diffraction (XRD) technique. The main…

Abstract

Purpose

The purpose of this paper is to report the structural properties of AlxGa1−xN (0≤x≤1) grown on sapphire substrate by means of X‐ray diffraction (XRD) technique. The main purpose of this work was to investigate the effects of Al(x) composition to the structural and microstructural properties of AlxGa1−xN ternary alloy such as the crystalline quality, crystalline structure and lattice constant c.

Design/methodology/approach

AlxGa1−xN thin films with wurtzite structure in the composition range of 0≤x≤1 are used in this study. The compositions of the samples are calculated using Vegard's law and verified by energy dispersive X‐ray analysis. The samples are then characterized by means of XRD rocking curve (RC) and phase analysis.

Findings

Investigation revealed that the full width half maximum (FWHM) of RC increase with the increase x value. This indicates that the crystalline quality of the samples deteriorate with the increase of Al compositions. The best fit of the non‐linear interpolation of the FWHM of the (002) diffraction RC data suggested that a maximum disorder should be expected in this mixed crystals system when the composition x≈45 percent.

Originality/value

This paper provides valuable information on the effect of Al compositions to the structural characteristics of AlxGa1−xN alloy system. The availability of information about maximum disorder of Al composition in AlxGa1−xN (0≤x≤1) alloy system provides useful reference in device fabrications where researchers are able to choose correct alloy composition in order to fabricate good quality devices.

Details

Microelectronics International, vol. 28 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

To view the access options for this content please click here
Article
Publication date: 4 May 2012

Ang Chai Im, Leonard Lu Tze Jian, Ooi Poh Kok, Suriani Yaakob, Ching Chin Guan, Ng Sha Shiong, Zainuriah Hassan, Haslan Abu Hassan and Mat Johar Abdullah

The purpose of this paper is to synthesize porous zinc oxide (ZnO) by means of strain etching/wet chemical etching method with the use of 0.5% of nitric acid (HNO3

Abstract

Purpose

The purpose of this paper is to synthesize porous zinc oxide (ZnO) by means of strain etching/wet chemical etching method with the use of 0.5% of nitric acid (HNO3) etchant. The structural and surface morphological properties of the samples are accessed by using X‐ray diffraction (XRD) and scanning electron microscopy (SEM) characterization techniques.

Design/methodology/approach

ZnO samples used in this work were deposited on the p‐Si (111) substrates by using radio frequency (RF) sputtering technique. Wet chemical etching processes with the use of 0.5% HNO3 etchant was applied on these samples in order to obtain porous structure. The porous ZnO samples are characterized by means of XRD and SEM to access their structural and surface morphological properties.

Findings

The XRD and SEM cross‐sectional measurements revealed that the thickness of the etched ZnO thin films is proportional to the etching time. SEM micrographs show that the surface morphology of ZnO changes over etching time. On the other hand, XRD results indicate that the crystallite sizes of the ZnO(002) decreases when the etching time increases.

Originality/value

The paper shows how porous ZnO thin films have been successfully synthesized by using simple wet chemical etching. SEM images reveal that this method is reliable when producing porous structure ZnO surfaces.

Details

Microelectronics International, vol. 29 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

To view the access options for this content please click here
Article
Publication date: 12 January 2010

Amir Maghsoudipour, Mohamad Hassan Sarrafi, Fathollah Moztarzadeh and Ali Aghajani Bazazi

The purpose of this paper is to investigate the effect of boric acid as a flux on the formation of the akermanite phase and optical properties of SrMgSi2O7:Eu,Dy phosphors.

Abstract

Purpose

The purpose of this paper is to investigate the effect of boric acid as a flux on the formation of the akermanite phase and optical properties of SrMgSi2O7:Eu,Dy phosphors.

Design/methodology/approach

The silicate‐based phosphor is prepared by sol‐gel method. Sr(NO3)2, Mg(NO3)2 · 6H2O, Dy2O3, Eu2O3, are added to distilled water in their stoichiometric ratio, the obtained solution are mixed with H3BO3 (in the range of 0.01‐0.5 mol%) and a polymeric compound TESO (C8H2O4Si). At the end, the phase composition and optical properties are investigated using X‐ray diffraction (XRD) and spectrophotometer analysis, respectively.

Findings

The XRD results showed that the akermanite (Sr2MgSi2O7) is the only crystalline phase which is detected in the sample containing 0.05 mol% boric acid. Increasing of boric acid does not have a great effect on the XRD patterns intensity. Spectrophotometer analysis results show three maximum at 365, 395 and 430 nm on the excitation spectra. It also shows intensity of the excitation and emission spectra increased by adding boric acid up to 0.25 mol% and a sudden drop at 0.5 mol% boric acid.

Originality/value

Using boric acid as a flux, enhances formation of akermanite phase at lower temperature with desirable optical properties and a cost‐benefit way for industrial production. In this research, optimum value of boric acid was determined using XRD data, emission and excitation spectra.

Details

Pigment & Resin Technology, vol. 39 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article
Publication date: 22 September 2021

Altaf H. Basta, Vivian F. Lotfy and Aya M. Salem

This study aims to motivate the application of some low-cost minerals in synthesizing nanoparticles as effective additives on the performance of liquid crystal (LC…

Abstract

Purpose

This study aims to motivate the application of some low-cost minerals in synthesizing nanoparticles as effective additives on the performance of liquid crystal (LC) hydroxypropyl cellulose (HPC) nanocomposite film, in comparison with carbon nanoallotrope.

Design/methodology/approach

Metallic nanoparticles of vanadium oxide, montmorillonite (MMT) and bentonite were synthesized and characterized by different techniques (Transmission electron microscopy [TEM], X-ray diffraction [XRD] and Fourier transform infrared [FTIR]). While the XRD, FTIR, non-isothermal analysis thermogravimetric analysis, mechanical analysis, scanning electron microscope and polarizing microscope were techniques used to evaluate the key role of metallic nanoparticles on the performance of HPC-nanocomposite film.

Findings

The formation of nanoparticles was evidenced from TEM. The XRD and FTIR measurements of nanocomposite films revealed that incorporating the mineral nanoparticles led to enhance the HPCs crystallinity from 14% to 45%, without chemical change of HPC structure. It is interesting to note that these minerals provide higher improvement in crystallinity than carbon nanomaterials (28%). Moreover, the MMT provided film with superior thermal stability and mechanical properties than pure HPC and HPC containing carbon nanoparticles, where it increased the Ea from 583.6 kJ/mol to 669.3 kJ/mol, tensile strength from 2.25 MPa to 2.8 MPa, Young’s modulus from 119 MPa to 124 MPa. As well as it had a synergistic effect on the LC formation and the birefringence texture of the nanocomposites (chiral nematic).

Research limitations/implications

Hydroxylpropyl cellulose-nanocomposite films were prepared by dissolving the HPC powder in water to prepare 50% concentration, (free or with incorporating 5% synthesized nanoparticles). To obtain films with uniform thickness, the prepared solutions were evenly spread on a glass plate via an applicator, by adjusting the thickness to 0.2 mm, then air dried.

Practical implications

These minerals provide higher improvement in crystallinity than carbon nanomaterials (28%), moreover, the MMT and bentonite provided films with superior thermal stability than pure HPC and HPC containing carbon nanoparticles. The mineral nanoparticles (especially MMT nanoclays) had a synergistic effect on LC formation and the birefringence texture of the nanocomposites (chiral nematic).

Social implications

This study presents the route to enhance the utilization of claystone available in El-Fayoum Province as the precursor for nanoparticles and production high performance LC nanocomposites.

Originality/value

This study presents the route for the valorization of low-cost mineral-based nanoparticles in enhancing the properties of HPC-film (crystallinity, thermal stability, mechanical strength), in comparison with carbon-based nanoparticles. Moreover, these nanoparticles provided more ordered mesophases and, consequently, good synergetic effect on LCs formation and the birefringence texture of the HPC-films.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article
Publication date: 21 June 2021

Tiago Czelusniak and Fred Lacerda Amorim

This paper aims to provide a detailed study on influence of the laser energy density on mechanical, surface and dimensional properties of polyamide 12 (PA12) parts…

Abstract

Purpose

This paper aims to provide a detailed study on influence of the laser energy density on mechanical, surface and dimensional properties of polyamide 12 (PA12) parts produced by selective laser sintering (SLS), providing the microstructural and crystallization evolution of the samples produced at different energy densities.

Design/methodology/approach

Making use of a space filling design of experiments, a wide range of laser sintering parameters is covered. Surface morphology is assessed by means of profile measurements and scanning electron microscopy (SEM) images. Mechanical testing, SEM, X-ray diffraction (XRD), differential scanning calorimeter (DSC) and infrared spectroscopy (FTIR) were used to assess the influence of energy density on structural and mechanical properties.

Findings

Results show a high dependency of the properties on the laser energy density and also a compromise existing between laser exposure parameters and desired properties of laser sintered parts. Surface roughness could be associated to overlap degree when using higher scan line spacing values and lower laser speeds improved surface roughness when high scan line spacing is used. Higher mechanical properties were found at higher energy density levels, but excessively high energy density decreased mechanical properties. A transition from brittle to ductile fracture with increasing energy density could be clearly observed by mechanical analysis and SEM. XRD and DSC measurements show a decrease on the crystal fraction with increasing energy densities, which corroborated the plastic behavior observed, and FTIR measurements revealed polymer degradation through chain scission might occur at too high energy densities.

Originality/value

Valuable guidelines are given regarding energy density optimization for SLS of PA12 considering not only quality criteria but also microstructure characteristics. Surface properties are studied based on the concept of degree of overlap between laser scanning lines. For the first time, crystallization behavior of SLS PA12 parts produced at different energy levels was studied by means of XRD measurements. Polymer degradation of SLS PA12 parts was evaluated with FTIR, which is a non-destructive and easy test to be conducted.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 16 April 2020

Rajesh Kumar Bhushan

Mechanical properties are highly sensitive to the microstructure, and these are indirectly related to solidification parameters and processing conditions. AA7075 possesses…

Abstract

Purpose

Mechanical properties are highly sensitive to the microstructure, and these are indirectly related to solidification parameters and processing conditions. AA7075 possesses lightweight and excellent properties as structural material which can be optimized with SiCp addition and a good fabrication technique.

Design/methodology/approach

7000 series aluminium alloys exhibit the highest mechanical properties. They are used for high-strength structural applications such as aircraft parts and sporting goods. The desirable properties of these alloys are: low density, high stiffness, specific strength, good wear resistance and creep resistance. The focus of this work is to investigate the microstructure of composites formed by the dispersion of silicon carbide particles (SiC) into AA7075 by stir casting processes. 7075 Al alloy is reinforced with 10 and 15 wt.% SiCp of size 10–20 µm by stir casting process. The composites have been characterized by X-ray diffraction and scanning electron microscopy, differential thermal analysis and electron probe microscopic analysis.

Findings

SiCp distribution and interaction with AA7075 matrix have been studied. AA7075/10 wt.%/SiCp (10–20 µm) and AA7075/15 wt.%/SiCp (10–20 µm) composites microstructure showed excellent SiCp distribution into AA7075 matrix. In addition, no evidence of secondary chemical reactions has been observed in X-ray diffraction and electron probe microscopic analysis.

Originality/value

Little experimental work has been reported so far about effect of addition of 10 and 15 wt.% SiCp of size (10–20 µm) on the microstructure of 7075 Al alloy fabricated by stir casting process. The present investigation has been carried out to study the microstructure and carry out XRD, DTA and EPMA analysis of 7075 Al alloy, 10 and 15 wt.% SiCp of size (10–20 µm) composite and detect the interfacial reactions with the objective to minimize the formation of Al4C3.

Details

International Journal of Structural Integrity, vol. 12 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

To view the access options for this content please click here
Article
Publication date: 1 April 2005

Harpreet Singh, D. Puri and S. Prakash

Plasma spray coating technologies are capable of depositing a wide range of compositions without significantly heating the substrate. The objective is to characterise…

Downloads
1342

Abstract

Purpose

Plasma spray coating technologies are capable of depositing a wide range of compositions without significantly heating the substrate. The objective is to characterise plasma sprayed metallic coatings on a Fe‐based superalloy.

Design/methodology/approach

NiCrAlY, Ni‐20Cr, Ni3Al and Stellite‐6 metallic coatings were deposited on a Fe‐based superalloy (32Ni‐21Cr‐0.3Al‐0.3Ti‐1.5Mn‐1.0Si‐0.1C‐Bal Fe) by the shrouded plasma spray process. The coatings were characterised in relation to coating thickness, porosity, microhardness and microstructure. The high temperature oxidation behaviour of the coatings was investigated in brief. The techniques used in the present investigation include metallography, XRD and SEM/EDAX.

Findings

All the coatings exhibited a lamellar structure with distinctive boundaries along with the presence of some porosity and oxide inclusions. The microhardness of the coatings was observed to vary with the distance from the coating‐substrate interface. The St‐6 coating had the maximum microhardness, whereas the lowest hardness was exhibited by the Ni3Al coating. The phases revealed by XRD of the coatings confirmed the formation of solid solutions, whereas EDAX analysis of the as‐sprayed coatings confirmed the presence of basic elements of the coating powders. So far as high temperature oxidation behaviour is concerned, all of the coatings followed the parabolic rate law and resulted in the formation of protective oxide scales on the substrate superalloy.

Originality/value

The plasma spray process provides the possibility of developing coatings of Ni3Al as well as commercial available NiCrAlY, Ni‐20Cr and St‐6 powders on Fe‐based superalloy Superfer 800H

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

To view the access options for this content please click here
Article
Publication date: 1 June 2005

R. Aghababzadeh, A.R. Mirhabibi, H. Bastami, E.T. Taheri‐Nassaj and L. Lin

To investigate the effects of the temperature of synthesis and of the thermal treatment of zinc chromate on the properties of the zinc chromate pigments.

Abstract

Purpose

To investigate the effects of the temperature of synthesis and of the thermal treatment of zinc chromate on the properties of the zinc chromate pigments.

Design/methodology/approach

Zinc chromate pigments was prepared using zinc salt solution, sodium hydroxide and potassium dichromate solutions. The reaction temperature was varied in order to evaluate the effect of the reaction temperature on the properties of the pigment synthesised. The pigment obtained was heated to 10°C above the critical temperature in order to investigate the effect of thermal treatment on the pigment properties. SEM, XRD, XFR and STA were employed for the characterisation of the pigments synthesised.

Findings

Reaction temperature had a significant effect on the properties of the resulting pigment. Thermal treatment of the pigment caused the decomposition of the zinc chromate phase to ZnO, ZnCr2O4 and K2CrO4 phases. The glaze containing zinc chromate had satisfactory colour characteristics.

Research limitations/implications

The study focused on the preparation and evaluation of zinc chromate as a substitute for praseodymium zircon in glaze. The study could be extended to investigation of similar inorganic pigment for similar purposes.

Practical implications

The information on the effects of the reaction temperature of pigment synthesis and of thermal treatment of the pigment is useful for industrial production of the pigment of satisfactory properties.

Originality/value

Novel use of zinc chromate as a lower‐cost substitute for praseodymium zircon in glaze and understanding of the effects of the production conditions on the properties of the resulting pigment and the glaze.

Details

Pigment & Resin Technology, vol. 34 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article
Publication date: 22 March 2013

V. Muthukumaran, M. Senthil kumar and V. Selladurai

The purpose of the paper is to study effect of the implantation of oxygen and helium ions on the corrosion performance of the AISI3l6L stainless steel. It presents useful…

Abstract

Purpose

The purpose of the paper is to study effect of the implantation of oxygen and helium ions on the corrosion performance of the AISI3l6L stainless steel. It presents useful new results which allows one to draw conclusions as to the suitability of the helium and oxygen ion implanted AISI 316L stainless steel for biomedical use in the body.

Design/methodology/approach

The implantation of oxygen and helium ions was done on AISI 316L SS at an energy level of 100 keV at a dose of 1×1017 ions/cm2, at room temperature. In order to simulate the natural tissue environment, an electrochemical test using cyclic polarization was done in a 0.9 percent sodium chloride solution at a pH value of 6.3 at 37°C. This was carried out on both the virgin and implanted AISI 316L stainless steel for the purpose of comparing performance. In addition to this, the hardness of the virgin and implanted samples was also studied using Vickers microhardness tester with varying loads. Besides, the surface morphologies of the implanted samples and the corroded samples were studied with XRD and SEM.

Findings

From the study the following findings are made. First, the XRD and SEM results were found to be in accordance with the corrosion test results. Second, the general corrosion behavior showed a significant improvement in the case of both helium implanted (icorr=0.0689 mA/cm2) and oxygen implanted (icorr=1.104 mA/cm2), when compared to the virgin AISI 316L SS (icorr=1.2187 mA/cm2). The pitting corrosion showed a significant improvement for helium implanted (Epit=230 mV) when compared to virgin material (Epit=92 mV). The oxygen implanted has not shown any improvement (Epit=92 mV). The surface hardness is found to be 1202 HV for helium implanted and 1020 HV for oxygen implanted, while it is found to be 195 HV for the virgin material. The hardness of the helium and oxygen implanted samples is found to be increased by about 600 percent and 500 percent, respectively, when compared to the virgin samples. Helium implanted samples show better performance in terms of corrosion resistance and hardness when compared to those of the oxygen implanted samples.

Originality/value

Although a number of authors have conducted many research on AISI 316L stainless steel, this work has original experimental results in terms of the oxygen and helium ion implantation parameters used and the specific tests: microhardness, electrochemical corrosion test, SEM and XRD that were used. It thus presents useful new results which allows one to draw conclusions as to the suitability of the Helium and Oxygen ion implanted AISI 316L stainless steel for biomedical use.

Details

Journal of Engineering, Design and Technology, vol. 11 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of over 1000