Search results

1 – 10 of 806
Article
Publication date: 7 September 2015

Milesa Ž Sreckovic, Branka Kaludjerovic, Aleksander G Kovacevic, Aleksandar Bugarinovic and Dragan Družijanic

The purpose of this paper is to present the results of interaction occurring during the exposition of some specific carbon textile materials obtained in laboratory conditions to…

Abstract

Purpose

The purpose of this paper is to present the results of interaction occurring during the exposition of some specific carbon textile materials obtained in laboratory conditions to beams of various laser types.

Design/methodology/approach

Carbon fabric materials – fiber, felt and cloth – obtained from different precursor materials and prepared at various process conditions (oxidized, partially carbonized, carbonized, graphitized), were exposed to pulses of various lasers (Nd3+: YAG, alexandrite, ruby).

Findings

Depending on the laser power, plasma and destructive phenomena occurred. In the case of an interaction between a Nd3+: YAG laser beam and specimens of thickness in millimeter range, the authors have estimated the threshold of the energy density for drilling and discussed the possible models of the interaction.

Research limitations/implications

The results have implications in the estimations of quality as well as in the improvement of material processing, giving some new light to the changes of mechanical and optical constants of the material, as well as to the changes of carbon groups of the material, which would be useful for different types of modeling. Future research will be in the interaction of laser beams with various textile materials, where the investigation would cover the microstructure changes and the implications on cloth cutting and welding, concerning the damages as well as relief structures, specially renew for fs laser regimes.

Originality/value

The area of laser applications in the textile industry is supported by scientific and applicative exploration. However, fewer results are concerned with deep introspection into the microstructure of the damages considering the laser interaction with carbon fiber and other carbon-based textiles.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 8 July 2019

Sharifatul Ain Binti Sharifuddin, Salwani Binti Ismail, Imran Abdullah, Irfan Mohamad and Javeed Shaikh Mohammed

Staphylococcus aureus (S. aureus), Klebsiella pneumoniae (K. pneumoniae) and Streptococcus pneumoniae (S. pneumoniae) are among the pathogens detected during Hajj pilgrimage known…

1164

Abstract

Purpose

Staphylococcus aureus (S. aureus), Klebsiella pneumoniae (K. pneumoniae) and Streptococcus pneumoniae (S. pneumoniae) are among the pathogens detected during Hajj pilgrimage known to cause pneumonia. This study aims to evaluate the antibacterial activity of activated carbon cloth (ACC) with Ag+ impregnated with zinc oxide nanoparticles (ZnO NPs) against these pathogens.

Design/methodology/approach

ZnO NPs were impregnated into ACC-Ag+ via layer-by-layer (LbL) self-assembly. Scanning electron microscope (SEM) was used to observe the fine surface morphological details of the ACC-Ag+-ZnO sheets. Antibacterial activity of the ACC-Ag+-ZnO sheets was evaluated using the disk-diffusion susceptibility assay. Allergy patch test was done to evaluate allergic reactions of the ACC-Ag+-ZnO sheets on human skin.

Findings

SEM micrographs showed successful impregnation of ZnO NPs into the ACC-Ag+ sheets. Disk-diffusion susceptibility assay results of ACC-Ag+-ZnO sheets against S. aureus, K. pneumoniae and S. pneumoniae showed good antibacterial activity; with 1.82 ± 0.13 mm zone of inhibition for S. pneumoniae, at a ZnO concentration of 0.78 mg mL-1. No signs of human skin irritation were observed throughout the allergy patch test.

Originality/value

Results indicate that ACC-Ag+-ZnO sheets could potentially be embedded within surgical face masks (pilgrims’ preferred) to reduce the risks involved with the transmission of respiratory tract infections during and after mass gatherings (e.g. Hajj/Umrah, Olympics).

Details

Research Journal of Textile and Apparel, vol. 23 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 January 1991

PRODUCTS and processes from many companies were shown at this Exhibition at Manchester which emphasised the place that advanced composites and reinforced plastics now play in…

Abstract

PRODUCTS and processes from many companies were shown at this Exhibition at Manchester which emphasised the place that advanced composites and reinforced plastics now play in almost every area of activity. In the aerospace field, developments are occurring at a rate which has seen the introduction of these materials into components that have always been regarded as essentially metal construction.

Details

Aircraft Engineering and Aerospace Technology, vol. 63 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 August 2003

L.C. Hieu, E. Bohez, J. Vander Sloten, H.N. Phien, E. Vatcharaporn, P.H. Binh, P.V. An and P. Oris

Design methods for medical rapid prototyping (RP) of personalized cranioplasty implants are presented in this paper. These methods are applicable to model cranioplasty implants…

2333

Abstract

Design methods for medical rapid prototyping (RP) of personalized cranioplasty implants are presented in this paper. These methods are applicable to model cranioplasty implants for all types of the skull defects including beyond‐midline and multiple defects. The methods are based on two types of anatomical data, solid bone models (STereoLithography files – STL) and bone slice contours (Initial Graphics Exchange Specification – IGES and StrataSys Layer files – SSL). The bone solids and contours are constructed based on computed tomography scanning data, and these data are generated in medical image processing and STL slicing packages.

Details

Rapid Prototyping Journal, vol. 9 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 1988

G.A. Green and F.J. Tribe

Submarine propeller shaft seals operate under onerous conditions in an aggressive environment and their effective life is vitally dependent upon the durability of the seal face…

Abstract

Submarine propeller shaft seals operate under onerous conditions in an aggressive environment and their effective life is vitally dependent upon the durability of the seal face materials. The combination of physical and mechanical properties of certain carboncarbon composites makes them potentially suitable for this critical service, but a literature search revealed no prior reference to their deployment in any liquid sealing application nor, indeed, to their behaviour in an aqueous environment. In consequence, a programme of work has been carried out to determine the effect of prolonged exposure to high‐pressure sea water upon their properties, and to assess their performance when run in a seal test rig against a variety of counter surfaces. The assessments were made under a reproducible condition of boundary lubrication stabilised by control of interface torque. The effects of composite anisotrophy and of graphitisation have been examined using specimen rings with the direction of fibre lay‐up either in, or normal to, the rubbing plane, and in the graphitised or non‐graphitised condition. It has been shown that the carboncarbon composites are stable in water and perform well as a seal face material; however, current high procurement cost will probably restrict their use to the more exacting applications.

Details

Industrial Lubrication and Tribology, vol. 40 no. 3
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 3 November 2022

Xiaoping Lin, Xiaoyan Li, Jiming Yao, Xianghong Li and Jianlin Xu

To develop electrode materials for supercapacitor with superior electrochemical performance and simple preparation process, the purpose of this study is to prepare flexible…

Abstract

Purpose

To develop electrode materials for supercapacitor with superior electrochemical performance and simple preparation process, the purpose of this study is to prepare flexible CC/NiS/a-NiS electrodes with self-supporting structure by loading hydrothermally synthesized a-NiS particles along with nano-NiS on carbon cloth by electroplating method.

Design/methodology/approach

The effects of current densities, temperatures and pH values on the loading amount and uniformity of the active substances during the plating process were investigated on the basis of optimization of surface morphology, crystalline structure and electrochemical evaluation as the cyclic voltammetry curves, constant current charge–discharge curves and AC impedance.

Findings

The a-NiS particles on CC/NiS/a-NiS were mostly covered by the plated nano-NiS, which behaved as a bulge and provided a larger specific surface area. The CC/NiS/a-NiS electrode prepared with the optimized parameter exhibited a specific capacitance of 115.13 F/g at a current density of 1 A/g and a Coulomb efficiency of 84% at 5 A/g, which is superior to that of CC/NiS electrode prepared by electroplating at a current density of 10 mA/cm2, a temperature of 55°C and a pH of 4, demonstrating its fast charge response of the electrode and potential application in wearable electronics.

Originality/value

This study provides an integrated solution for the development of specifically structured NiS-based electrode for supercapacitor with simple process, low cost and high electrochemical charge/discharge performance, and the simple and easy-to-use method is also applicable to other electrochemically active composites.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 February 2024

Wenhai Tan, Yichen Zhang, Yuhao Song, Yanbo Ma, Chao Zhao and Youfeng Zhang

Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion…

24

Abstract

Purpose

Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion batteries due to their high theoretical capacity, simple synthesis, low cost and environmental friendliness. Many studies were concentrated on the synthesis, design and doping of cathodes, but the effect of process parameters on morphology and performance was rarely reported.

Design/methodology/approach

Herein, Co3O4 cathode material based on carbon cloth (Co3O4/CC) was prepared by different temperatures hydrothermal synthesis method. The temperatures of hydrothermal reaction are 100°C, 120°C, 130°C and 140°C, respectively. The influence of temperatures on the microstructures of the cathodes and electrochemical performance of zinc ion batteries were investigated by X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry curve, electrochemical charging and discharging behavior and electrochemical impedance spectroscopy test.

Findings

The results show that the Co3O4/CC material synthesized at 120°C has good performance. Co3O4/CC nanowire has a uniform distribution, regular surface and small size on carbon cloth. The zinc-ion battery has excellent rate performance and low reaction resistance. In the voltage range of 0.01–2.2 V, when the current density is 1 A/g, the specific capacity of the battery is 108.2 mAh/g for the first discharge and the specific capacity of the battery is 142.6 mAh/g after 60 charge and discharge cycles.

Originality/value

The study aims to investigate the effect of process parameters on the performance of zinc-ion batteries systematically and optimized applicable reaction temperature.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Content available
Article
Publication date: 1 October 2001

130

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 48 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 March 2011

Richard R. Williams, William E. Howard and Scott M. Martin

The purpose of this paper is to investigate the feasibility of using rapid prototyping (RP) technologies (stereolithography (SLA), fused deposition modeling (FDM), and…

1321

Abstract

Purpose

The purpose of this paper is to investigate the feasibility of using rapid prototyping (RP) technologies (stereolithography (SLA), fused deposition modeling (FDM), and three‐dimensional printing (3DP)) for fabrication of the core of a composite sandwich structure.

Design/methodology/approach

Control cores of a flat geometry were fabricated from epoxy using SLA and from acrylonitrile butadiene styrene (ABS) plastic using FDM. Corrugated geometry cores were fabricated using SLA, FDM, and 3DP. Carbon‐epoxy composite sandwich structures were fabricated from all cores using a wet‐hand layup process with vacuum cure. The performance of each core was measured using a bend test to determine bending stiffness and failure load.

Findings

Based upon bending stiffness and failure load, composite sandwich structures utilizing epoxy cores fabricated via SLA outperformed composite sandwich structures utilizing plaster powder and ABS plastic cores. Composite sandwich structures with corrugated ABS plastic cores outperformed those with flat ABS plastic cores by a margin well beyond that predicted by theory in both bending stiffness and failure load.

Research limitations/implications

The marked improvement in stiffness and failure load of the composite sandwich structures with corrugated ABS plastic cores over those with flat ABS cores is not explained by the theoretical improvement due to an increased area moment of inertia and increased surface area. Additional research in the failure mechanism is warranted.

Practical implications

The ability to easily create complex core geometries will allow for the ability to place enhanced structural features in the regions of high stress.

Originality/value

This paper demonstrates that cores fabricated via RP technology and containing enhanced structural features are suitable for carbon‐epoxy composite sandwich structures.

Details

Rapid Prototyping Journal, vol. 17 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 September 1976

Ronald C. Hearn

Glassflake filled polyester and epoxy resin lining and coating systems have been developed and used in the fight against corrosion during the last 15 years. Similarly…

Abstract

Glassflake filled polyester and epoxy resin lining and coating systems have been developed and used in the fight against corrosion during the last 15 years. Similarly, sophisticated silica and carbon filled glass cloth reinforced systems have been developed for rapid site installation to tanks and floors. These linings have many technical and cost advantages over conventional materials and are now gaining wide acceptance by the plant engineer and specifier.

Details

Anti-Corrosion Methods and Materials, vol. 23 no. 9
Type: Research Article
ISSN: 0003-5599

1 – 10 of 806