Search results

1 – 10 of 23
To view the access options for this content please click here
Article
Publication date: 20 April 2015

Abby Megan Paterson, Richard Bibb, R. Ian Campbell and Guy Bingham

– The purpose of this paper is to compare four different additive manufacturing (AM) processes to assess their suitability in the context of upper extremity splinting.

Abstract

Purpose

The purpose of this paper is to compare four different additive manufacturing (AM) processes to assess their suitability in the context of upper extremity splinting.

Design/methodology/approach

This paper describes the design characteristics and subsequent fabrication of six different wrist splints using four different AM processes: laser sintering (LS), fused deposition modelling (FDM), stereolithography (SLA) and polyjet material jetting via Objet Connex. The suitability of each process was then compared against competing designs and processes from traditional splinting. The splints were created using a digital design workflow that combined recognised clinical best practice with design for AM principles.

Findings

Research concluded that, based on currently available technology, FDM was considered the least suitable AM process for upper extremity splinting. LS, SLA and material jetting show promise for future applications, but further research and development into AM processes, materials and splint design optimisation is required if the full potential is to be realised.

Originality/value

Unlike previous work that has applied AM processes to replicate traditional splint designs, the splints described are based on a digital design for AM workflow, incorporating novel features and physical properties not previously possible in clinical splinting. The benefits of AM for customised splint fabrication have been summarised. A range of AM processes have also been evaluated for splinting, exposing the limitations of existing technology, demonstrating novel and advantageous design features and opportunities for future research.

Details

Rapid Prototyping Journal, vol. 21 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 15 August 2019

Diana Popescu, Aurelian Zapciu, Cristian Tarba and Dan Laptoiu

This paper aims to propose a new solution for producing customized three-dimensional (3D)-printed flat-shaped splints, which are then thermoformed to fit the patient’s…

Abstract

Purpose

This paper aims to propose a new solution for producing customized three-dimensional (3D)-printed flat-shaped splints, which are then thermoformed to fit the patient’s hand. The splint design process is automated and is available to clinicians through an online application.

Design/methodology/approach

Patient anthropometric data measured by clinicians are associated with variables of parametric 3D splint models. Once these variables are input by clinicians in the online app, customized stereo lithography (STL) files for both splint and half mold, in the case of the bi-material splint, are automatically generated and become available for download. Bi-materials splints are produced by a hybrid manufacturing process involving 3D printing and overmolding.

Findings

This approach eliminates the need for 3D CAD-proficient clinicians, allows fast generation of customized splints, generates two-dimensional (2D) drawings of splints for verifying shape and dimensions before 3D printing and generates the STL files. Automation reduces splint design time and cost, while manufacturing time is diminished by 3D printing the splint in a flat position.

Practical implications

The app could be used in clinical practice. It meets the demands of mass customization using 3D printing in a field where individualization is mandatory. The solution is scalable – it can be extended to other splint designs or to other limbs. 3D-printed tailored splints can offer improved wearing comfort and aesthetic appearance, while maintaining hand immobilization, allowing visually controlled follow-up for edema and rapidly observing the need for revision if necessary.

Originality/value

An online application was developed for uploading patient measurements and downloading 2D drawings and STL files of customized splints. Different models of splints can be designed and included in the database as alternative variants. A method for producing bi-materials flat splints combining soft and rigid polymers represents another novelty of the research.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 29 January 2018

Virginia P. Stofer, Scott McLean and Jimmy Smith

Wrist orthoses are used by occupational therapists to decrease pain, support weak muscles and protect tissues during healing. However, use of wrist orthoses has been…

Abstract

Purpose

Wrist orthoses are used by occupational therapists to decrease pain, support weak muscles and protect tissues during healing. However, use of wrist orthoses has been observed to produce compensatory movements in other upper extremity joints. This paper aims to determine whether wearing wrist orthoses produced compensatory movements of the elbow in addition to the shoulder when performing drinking and hammering tasks.

Design/methodology/approach

Two twin-axis electrogoniometers were positioned on the elbow and shoulder to track joint movement. The four conditions were drink with orthosis, hammer with orthosis, drink without orthosis and hammer without orthosis. Joint movement was defined as total angular excursion of the joint throughout the performance of the task. Separate 2 × 2 (joint × orthosis) repeated measures analyzes of variance (ANOVA) were used to evaluate differences in joint excursion of the elbow and shoulder joints between orthosis conditions for each task.

Findings

Wearing a wrist orthosis did not change the amount of joint excursion compared to not wearing an orthosis during the drinking and hammering tasks.

Originality/value

Findings suggest that wrist orthoses do not result in statistically significant changes in elbow and shoulder joint movements during simulated drinking and hammering tasks.

Details

Irish Journal of Occupational Therapy, vol. 46 no. 1
Type: Research Article
ISSN: 2398-8819

Keywords

To view the access options for this content please click here
Article
Publication date: 17 October 2017

Miguel Fernandez-Vicente, Ana Escario Chust and Andres Conejero

The purpose of this paper is to describe a novel design workflow for the digital fabrication of custom-made orthoses (CMIO). It is intended to provide an easier process…

Abstract

Purpose

The purpose of this paper is to describe a novel design workflow for the digital fabrication of custom-made orthoses (CMIO). It is intended to provide an easier process for clinical practitioners and orthotic technicians alike. It further functions to reduce the dependency of the operators’ abilities and skills.

Design/methodology/approach

The technical assessment covers low-cost three-dimensional (3D) scanning, free computer-aided design (CAD) software, and desktop 3D printing and acetone vapour finishing. To analyse its viability, a cost comparison was carried out between the proposed workflow and the traditional CMIO manufacture method.

Findings

The results show that the proposed workflow is a technically feasible and cost-effective solution to improve upon the traditional process of design and manufacture of custom-made static trapeziometacarpal (TMC) orthoses. Further studies are needed for ensuring a clinically feasible approach and for estimating the efficacy of the method for the recovery process in patients.

Social implications

The feasibility of the process increases the impact of the study, as the great accessibility to this type of 3D printers makes the digital fabrication method easier to be adopted by operators.

Originality/value

Although some research has been conducted on digital fabrication of CMIO, few studies have investigated the use of desktop 3D printing in any systematic way. This study provides a first step in the exploration of a new design workflow using low-cost digital fabrication tools combined with non-manual finishing.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 14 January 2014

David Palousek, Jiri Rosicky, Daniel Koutny, Pavel Stoklásek and Tomas Navrat

– The purpose of this paper is to describe a manufacturing methodology for a wrist orthosis. The case study aims to offer new approaches in the area of human orthoses.

Abstract

Purpose

The purpose of this paper is to describe a manufacturing methodology for a wrist orthosis. The case study aims to offer new approaches in the area of human orthoses.

Design/methodology/approach

The article describes the utilization of rapid prototyping (RP), passive stereo photogrammetry and software tools for the orthosis design process. This study shows the key points of the design and manufacturing methodology. The approach uses specific technologies, such as 3D digitizing, reverse engineering and polygonal-surface software, FDM RP and 3D printing.

Findings

The results show that the used technologies reflect the patient's requirements and also they could be an alternative solution to the standard method of orthosis design.

Research limitations/implications

The methodology provides a good position for further development issues.

Practical implications

The methodology could be usable for clinical practice and allows the manufacturing of the perfect orthosis of the upper limb. The usage of this methodology depends on the RP system and type of material.

Originality/value

The article describes a particular topical problem and it is following previous publications in the field of human orthoses. The paper presents the methodology of wrist orthosis design and manufacturing. The paper presents an alternative approach applicable in clinical practice.

Details

Rapid Prototyping Journal, vol. 20 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 24 May 2021

John Adie, Wayne Graham, Kerron Bromfield, Bianca Maiden, Sam Klaer and Marianne Wallis

This case study describes a community-based urgent care clinic in a general practitioner (GP) super clinic in South East Queensland.

Abstract

Purpose

This case study describes a community-based urgent care clinic in a general practitioner (GP) super clinic in South East Queensland.

Design/methodology/approach

This retrospective chart audit describes patient demographic characteristics, types of presentations and management for Sundays in 2015.

Findings

The majority of patients (97%) did not require admission to hospital or office investigations (95%) and presented with one condition (94%). Of the presentations, 66.5% were represented by 30 conditions. Most patients received a prescription (57%), some were referred to the pathology laboratory (15%) and some were referred to radiology (12%). A majority (54%) of patients presented in the first three hours. Approximately half (51%) of patients presenting were aged under 25. More females (53%) presented than males. A majority (53%) lived in the same postcode as the clinic. The three most common office tests ordered were urinalysis, electrocardiogram (ECG) and urine pregnancy test. Some patients (19%) needed procedures, and only 3% were referred to hospital.

Research limitations/implications

The study offers analysis of the client group that can be served by an urgent care clinic in a GP super clinic on a Sunday. The study provides an option for emergency department avoidance.

Originality/value

Despite calls for more research into community-based urgent care clinics, little is known in Australia about what constitutes an urgent care clinic. The study proposes a classification system for walk-in presentations to an urgent care clinic, which is comparable to emergency department presentations.

Details

Journal of Health Organization and Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7266

Keywords

To view the access options for this content please click here
Article
Publication date: 15 February 2008

Stephen Osahon Uwaifo

The paper seeks to examine the health risks faced when using computer‐based systems by library staff in Nigerian libraries.

Abstract

Purpose

The paper seeks to examine the health risks faced when using computer‐based systems by library staff in Nigerian libraries.

Design/methodology/approach

The paper uses a survey research approach to carry out this investigation.

Findings

The investigation reveals that the perceived health risk does not predict perceived ease of use of computer‐based libraries. Even though a wide range of health hazards were identified in the libraries, the level of availability of ergonomic programmes to tackle them was low.

Practical implications

In general, librarians, university authorities, IT policy formulators and systems administrators should find this paper useful, as it educates them about the fact that perceived health risk does not significantly deter people from using information systems. This is due to the enormous benefits arising from the use of IT when compared with the manual systems.

Originality/value

The study offers new insights in the area of IT use by librarians in Nigerian universities. That the study found that prevailing health risks do not significantly deter people from using information systems means that it differs from other studies.

Details

Program, vol. 42 no. 1
Type: Research Article
ISSN: 0033-0337

Keywords

To view the access options for this content please click here
Article
Publication date: 1 July 2000

Abstract

Details

Working with Older People, vol. 4 no. 3
Type: Research Article
ISSN: 1366-3666

To view the access options for this content please click here
Article
Publication date: 2 January 2018

Andrew Allan Johnson, Guy Bingham and Candice Majewski

The purpose of this paper is to establish the minimum thickness required to provide stab protection in accordance with the United Kingdom Home Office Scientific…

Abstract

Purpose

The purpose of this paper is to establish the minimum thickness required to provide stab protection in accordance with the United Kingdom Home Office Scientific Development Branch (HOSDB) standards while testing a series of laser sintered (LS) planar specimens using instrumented test apparatus.

Design/methodology/approach

Planar test specimens were LS in single-layer thicknesses ranging from 1.00 to 15.00 mm in four material powder categories – DuraForm® virgin, DuraForm 50/50 mix, DuraForm EX® virgin and DuraForm EX 50/50 mix. All specimens were tested using instrumented drop test apparatus and were impacted with established Stanley Tools 1992 trimming blades to the UK HOSDB KR1-E1 stab impact energy level.

Findings

The research demonstrated that a minimum single planar specimen thickness of 11.00 mm, manufactured from DuraForm EX 50/50 mix powder, was required to provide protection against the HOSDB KR1-E1 level of stab impact energy. The alternative powder mixes tested within this experiment demonstrated poor levels of stab protection, with virgin powder specimens demonstrating no protection up to 15.00 mm, whereas DuraForm 50/50 mix specimens demonstrating inconsistent performances.

Originality/value

This paper enhances on existing literature surrounding the manufacturing and testing of additive manufacturing (AM) stab-resistant armour by adding further rigour to the testing of AM body armour specimens. In addition, this research establishes key foundation characteristics which could be utilised for the future development of bespoke AM body armour garments.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 11 February 2020

Vito Ricotta, Robert Ian Campbell, Tommaso Ingrassia and Vincenzo Nigrelli

The purpose of this paper is to implement a new process aimed at the design and production of orthopaedic devices fully manufacturable by additive manufacturing (AM). In…

Abstract

Purpose

The purpose of this paper is to implement a new process aimed at the design and production of orthopaedic devices fully manufacturable by additive manufacturing (AM). In this context, the use of generative algorithms for parametric modelling of additively manufactured textiles (AMTs) also has been investigated, and new modelling solutions have been proposed.

Design/methodology/approach

A new method for the design of customised elbow orthoses has been implemented. In particular, to better customise the elbow orthosis, a generative algorithm for parametric modelling and creation of a flexible structure, typical of an AMT, has been developed.

Findings

To test the developed modelling algorithm, a case study based on the design and production of an elbow orthosis made by selective laser sintering was investigated. The obtained results have demonstrated that the implemented algorithm overcomes many drawbacks typical of the traditional computer aided design (CAD) modelling approaches. The parametric CAD model of the orthosis obtained through the new approach is characterised by a flexible structure with no deformations or mismatches and has been effectively used to produce the prototype through AM technologies.

Originality/value

The obtained results present innovative elements of originality in the CAD modelling sector, which can contribute to solving problems related to modelling for AM in different application fields.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 23