Search results

1 – 10 of 199
To view the access options for this content please click here
Article
Publication date: 20 June 2017

Muhammad Hussam Khaliq, Rui Gomes, Célio Fernandes, João Nóbrega, Olga Sousa Carneiro and Luis Lima Ferrás

This work aims to provide additional insights regarding the practicability of using conventional materials in the fused filament fabrication (FFF) process.

Abstract

Purpose

This work aims to provide additional insights regarding the practicability of using conventional materials in the fused filament fabrication (FFF) process.

Design/methodology/approach

Two different acrylonitryle butadiene styrene (ABS) grades are studied and compared, aiming to check to what extent the regular ABS developed for conventional polymer processing, with a different rheology than the one provided for the FFF process, can also be used in this process (FFF).

Findings

The rheological results show that a general-purpose ABS (ABS-GP) melt is much more viscous and elastic than ABS-FFF. It is clear that using ABS-GP as feedstock material in the FFF process results in poor coalescence and adhesion between the extruded filaments, which has a detrimental effect on the mechanical properties of the printed specimens. Despite its lower performance, ABS-GP can be a good choice if the objective is to produce an aesthetical prototype. If the objective is to produce a functional prototype or a final part, its mechanical performance requirements will dictate the choice.

Originality/value

This work provides insightful information regarding the use of high viscosity materials on the 3D printing process.

Details

Rapid Prototyping Journal, vol. 23 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 8 February 2021

Erfan Rezvani Ghomi, Saeideh Kholghi Eshkalak, Sunpreet Singh, Amutha Chinnappan, Seeram Ramakrishna and Roger Narayan

The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning…

Abstract

Purpose

The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning, manufacturing of patient-specific implants and developing anatomical models. Although a wide range of thermoplastic polymers are available as 3DP feedstock, yet obtaining biocompatible and structurally integrated biomedical devices is still challenging owing to various technical issues.

Design/methodology/approach

Polyether ether ketone (PEEK) is an organic and biocompatible compound material that is recently being used to fabricate complex design geometries and patient-specific implants through 3DP. However, the thermal and rheological features of PEEK make it difficult to process through the 3DP technologies, for instance, fused filament fabrication. The present review paper presents a state-of-the-art literature review of the 3DP of PEEK for potential biomedical applications. In particular, a special emphasis has been given on the existing technical hurdles and possible technological and processing solutions for improving the printability of PEEK.

Findings

The reviewed literature highlighted that there exist numerous scientific and technical means which can be adopted for improving the quality features of the 3D-printed PEEK-based biomedical structures. The discussed technological innovations will help the 3DP system to enhance the layer adhesion strength, structural stability, as well as enable the printing of high-performance thermoplastics.

Originality/value

The content of the present manuscript will motivate young scholars and senior scientists to work in exploring high-performance thermoplastics for 3DP applications.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 27 January 2021

Miguel Ángel Caminero, Ana Romero, Jesús Miguel Chacón, Pedro José Núñez, Eustaquio García-Plaza and Gloria Patricia Rodríguez

Fused filament fabrication (FFF) technique using metal filled filaments in combination with debinding and sintering steps can be a cost-effective alternative for…

Abstract

Purpose

Fused filament fabrication (FFF) technique using metal filled filaments in combination with debinding and sintering steps can be a cost-effective alternative for laser-based powder bed fusion processes. The mechanical behaviour of FFF-metal materials is highly dependent on the processing parameters, filament quality and adjusted post-processing steps. In addition, the microstructural material properties and geometric characteristics are inherent to the manufacturing process. The purpose of this study is to characterize the mechanical and geometric performance of three-dimensional (3-D) printed FFF 316 L metal components manufactured by a low-cost desktop 3-D printer. The debinding and sintering processes are carried out using the BASF catalytic debinding process in combination with the BASF 316LX Ultrafuse filament. Special attention is paid on the effects of build orientation and printing strategy of the FFF-based technology on the tensile and geometric performance of the 3-D printed 316 L metal specimens.

Design/methodology/approach

This study uses a toolset of experimental analysis techniques [metallography and scanning electron microcope (SEM)] to characterize the effect of microstructure and defects on the material properties under tensile testing. Shrinkage and the resulting porosity of the 3-D printed 316 L stainless steel sintered samples are also analysed. The deformation behaviour is investigated for three different build orientations. The tensile test curves are further correlated with the damage surface using SEM images and metallographic sections to present grain deformation during the loading progress. Mechanical properties are directly compared to other works in the field and similar additive manufacturing (AM) and Metal Injection Moulding (MIM) manufacturing alternatives from the literature.

Findings

It has been shown that the effect of build orientation was of particular significance on the mechanical and geometric performance of FFF-metal 3-D printed samples. In particular, Flat and On-edge samples showed an average increase in tensile performance of 21.7% for the tensile strength, 65.1% for the tensile stiffness and 118.3% for maximum elongation at fracture compared to the Upright samples. Furthermore, it has been able to manufacture near-dense 316 L austenitic stainless steel components using FFF. These properties are comparable to those obtained by other metal conventional processes such as MIM process.

Originality/value

316L austenitic stainless steel components using FFF technology with a porosity lower than 2% were successfully manufactured. The presented study provides more information regarding the dependence of the mechanical, microstructural and geometric properties of FFF 316 L components on the build orientation and printing strategy.

To view the access options for this content please click here
Article
Publication date: 7 June 2013

Edmund C. Penning‐Rowsell, Edward P. Evans, Jim W. Hall and Alistair G.L. Borthwick

The Foresight Future Flooding (FFF) project researched flood risk in the UK to the year 2100 for central government, using scenarios and a national risk assessment model

Abstract

Purpose

The Foresight Future Flooding (FFF) project researched flood risk in the UK to the year 2100 for central government, using scenarios and a national risk assessment model backed by qualitative analysis from panels of some 45 senior scientists. The purpose of this paper is to assess the impact of the project, both nationally and internationally.

Design/methodology/approach

This paper assesses the impact of the FFF project, both nationally and internationally, using web searches, document analysis, and a questionnaire survey of key actors in the flood risk management policy field.

Findings

It was found that the penetration of the project into professionals' consciousness was high in relation to other comparable projects and publications, and its impact on policy – both immediately and continuing – was profound. The FFF initiative did not create policy change, however, but facilitated its legitimation, adding impetus to what was already there, as one element of a part‐catalytic and part‐incremental process of policy evolution.

Research limitations/implications

Special circumstances, internal and external to the project, mean that this cannot be a simple model for matching research to policymakers' needs in the future.

Practical implications

Important lessons may be learnt from this project about both the methods of forward‐looking foresight‐type research, and the way that its results are disseminated to its target audiences.

Originality/value

This is an innovative attempt to assess the impact of a new type of foresight project.

Details

Foresight, vol. 15 no. 3
Type: Research Article
ISSN: 1463-6689

Keywords

To view the access options for this content please click here
Article
Publication date: 15 August 2019

Isaac Ferreira, Margarida Machado, Fernando Alves and António Torres Marques

In industry, fused filament fabrication (FFF) offers flexibility and agility by promoting a reduction in costs and in the lead-time (i.e. time-to-market). Nevertheless, FFF

Abstract

Purpose

In industry, fused filament fabrication (FFF) offers flexibility and agility by promoting a reduction in costs and in the lead-time (i.e. time-to-market). Nevertheless, FFF parts exhibit some limitations such as lack of accuracy and/or lower mechanical performance. As a result, some alternatives have been developed to overcome some of these restrictions, namely, the formulation of high performance polymers, the creation of fibre-reinforced materials by FFF process and/or the design of new FFF-based technologies for printing composite materials. This work aims to analyze these technologies.

Design/methodology/approach

This work aims to study and understand the advances in the behaviour of 3D printed parts with enhanced performance by its reinforcement with several shapes and types of fibres from nanoparticles to continuous fibre roving. Thus, a comprehensive survey of significant research studies carried out regarding FFF of fibre-reinforced thermoplastics is provided, giving emphasis to the most relevant and innovative developments or adaptations undergone at hardware level and/or on the production process of the feedstock.

Findings

It is shown that the different types of reinforcement present different challenges for the printing process with different outcomes in the part performance.

Originality/value

This review is focused on joining the most important researches dedicated to the process of FFF-printed parts with different types reinforcing materials. By dividing the reinforcements in categories by shape/geometry and method of processing, it is possible to better quantify performance improvements.

Details

Rapid Prototyping Journal, vol. 25 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 24 June 2020

Michele Moretti, Federico Bianchi and Nicola Senin

This paper aims to illustrate the integration of multiple heterogeneous sensors into a fused filament fabrication (FFF) system and the implementation of multi-sensor data…

Abstract

Purpose

This paper aims to illustrate the integration of multiple heterogeneous sensors into a fused filament fabrication (FFF) system and the implementation of multi-sensor data fusion technologies to support the development of a “smart” machine capable of monitoring the manufacturing process and part quality as it is being built.

Design/methodology/approach

Starting from off-the-shelf FFF components, the paper discusses the issues related to how the machine architecture and the FFF process itself must be redesigned to accommodate heterogeneous sensors and how data from such sensors can be integrated. The usefulness of the approach is discussed through illustration of detectable, example defects.

Findings

Through aggregation of heterogeneous in-process data, a smart FFF system developed upon the architectural choices discussed in this work has the potential to recognise a number of process-related issues leading to defective parts.

Research limitations/implications

Although the implementation is specific to a type of FFF hardware and type of processed material, the conclusions are of general validity for material extrusion processes of polymers.

Practical implications

Effective in-process sensing enables timely detection of process or part quality issues, thus allowing for early process termination or application of corrective actions, leading to significant savings for high value-added parts.

Originality/value

While most current literature on FFF process monitoring has focused on monitoring selected process variables, in this work a wider perspective is gained by aggregation of heterogeneous sensors, with particular focus on achieving co-localisation in space and time of the sensor data acquired within the same fabrication process. This allows for the detection of issues that no sensor alone could reliably detect.

Details

Rapid Prototyping Journal, vol. 26 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 8 January 2020

Jin Young Choi and Mark Timothy Kortschot

The purpose of this study is to confirm that the stiffness of fused filament fabrication (FFF) three-dimensionally (3D) printed fiber-reinforced thermoplastic (FRP…

Abstract

Purpose

The purpose of this study is to confirm that the stiffness of fused filament fabrication (FFF) three-dimensionally (3D) printed fiber-reinforced thermoplastic (FRP) materials can be predicted using classical laminate theory (CLT), and to subsequently use the model to demonstrate its potential to improve the mechanical properties of FFF 3D printed parts intended for load-bearing applications.

Design/methodology/approach

The porosity and the fiber orientation in specimens printed with carbon fiber reinforced filament were calculated from micro-computed tomography (µCT) images. The infill portion of the sample was modeled using CLT, while the perimeter contour portion was modeled with a rule of mixtures (ROM) approach.

Findings

The µCT scan images showed that a low porosity of 0.7 ± 0.1% was achieved, and the fibers were highly oriented in the filament extrusion direction. CLT and ROM were effective analytical models to predict the elastic modulus and Poisson’s ratio of FFF 3D printed FRP laminates.

Research limitations/implications

In this study, the CLT model was only used to predict the properties of flat plates. Once the in-plane properties are known, however, they can be used in a finite element analysis to predict the behavior of plate and shell structures.

Practical implications

By controlling the raster orientation, the mechanical properties of a FFF part can be optimized for the intended application.

Originality/value

Before this study, CLT had not been validated for FFF 3D printed FRPs. CLT can be used to help designers tailor the raster pattern of each layer for specific stiffness requirements.

Content available
Article
Publication date: 21 November 2018

Piotr Czyżewski, Marek Bieliński, Dariusz Sykutera, Marcin Jurek, Marcin Gronowski, Łukasz Ryl and Hubert Hoppe

The aim of this paper is presenting a new application of material obtained from the acrylonitrile butadiene styrene (ABS) recycling process from electronic equipment…

Abstract

Purpose

The aim of this paper is presenting a new application of material obtained from the acrylonitrile butadiene styrene (ABS) recycling process from electronic equipment housings. Elements of computer monitors were used to prepare re-granulate, which in turn was used to manufacture a filament for fused filament fabrication (FFF) additive manufacturing technology.

Design/methodology/approach

The geometry of test samples (i.e. dumbbell and bar) was obtained in accordance with the PN-EN standards. Samples made with the FFF technology were used to determine selected mechanical properties and to compare the results obtained with the properties of ABS re-granulate mould pieces made with the injection moulding technology. The GATE device manufactured by 3Novatica was used to make the prototypes with the FFF technology. Processing parameters were tested with the use of an Aflow extrusion plastometer manufactured by Zwick/Roell and other original testing facilities. Tests of mechanical properties were performed with a Z030 universal testing machine, a HIT 50P pendulum impact tester and a Z3106 hardness tester manufactured by Zwick/Roell.

Findings

The paper presents results of tests performed on a filament obtained from the ABS re-granulate and indicates characteristic processing properties of that material. The properties of the new secondary material were compared with the available original ABS materials that are commonly used in the additive technology of manufacturing geometrical objects. The study also presents selected results of tests of functional properties of ABS products made in the FFF technology.

Originality/value

The test results allowed authors to assess the possibility of a secondary application of used elements of electronic equipment housings in the FFF technology and to compare the strength properties of products obtained with similar products made with the standard injection moulding technology.

Details

Rapid Prototyping Journal, vol. 24 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 16 January 2017

Shahrain Mahmood, A.J. Qureshi, Kheng Lim Goh and Didier Talamona

This paper aims to discuss the effect of changes of a comprehensive list of process parameters on part scalability and tensile strength of fused filament fabrication (FFF

Abstract

Purpose

This paper aims to discuss the effect of changes of a comprehensive list of process parameters on part scalability and tensile strength of fused filament fabrication (FFF) printed parts. A number of parameters hitherto not studied such as cross-sectional area and its interaction with number of shells and infill density are presented and studied.

Design/methodology/approach

From a preliminary investigation, results have shown that varying the process parameters affects the ultimate tensile strength (UTS) of a FFF printed component, with component scale and number of shells as the two most significant parameters affecting the UTS. A further investigation based on the interactions of four process parameters, specimen width, b, specimen thickness, h, number of shells, n, and infill density, i, and their effects on the UTS was performed. Taguchi’s design of experiment was used to develop an experimental plan in this investigation. Specimens were printed and tested for their tensile strength until fracture and the results analyzed.

Findings

Results obtained support an inverse relationship between part scalability, change in cross-sectional area and the UTS of a FFF printed part. The UTS results were calculated in line with conventional method based on the gross cross-sectional area of A = (b × h).

Originality/value

The paper investigates the effect of part scalability on the UTS of FFF printed parts and evaluates the conventional method of calculating material tensile strength of FFF printed parts using the gross cross-sectional area of A = (b × h). The results of this findings show that the conventional method cannot be used as FFF printed parts consists of partially filled parts and not a solid component.

Details

Rapid Prototyping Journal, vol. 23 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 16 September 2019

Shijie Jiang, Yannick Siyajeu, Yinfang Shi, Shengbo Zhu and He Li

The purpose of this study is to investigate the efficiency of applied vibration in improving the forming quality (mechanical property and dynamics characteristics) of…

Abstract

Purpose

The purpose of this study is to investigate the efficiency of applied vibration in improving the forming quality (mechanical property and dynamics characteristics) of fused filament fabrication (FFF) parts.

Design/methodology/approach

A vibrating FFF three-dimensional printer was set up, with which the samples fabricated in different directions were manufactured separately without and with vibration applied. A series of experimental tests, including tensile tests, dynamics tests and scanning electron microscopy (SEM) tests, were performed on these samples to experimentally quantify the effect of applied vibration on their forming quality.

Findings

It has been found that the applied vibration can significantly increase the tensile strength and plasticity of the samples built in Z-direction, and obviously decrease the orthogonal anisotropy. It can also significantly change the sample’s natural frequency, decrease the resonant response and increase the modal damping ratio, thus improve the anti-vibration capability of FFF samples. In addition, the SEM analysis confirmed that applying vibration into FFF process could improve the forming quality of the fabricated part.

Research limitations/implications

Future research may be focused on investigating the efficiency of applied vibration in improving the forming quality of parts fabricated by the other additive manufacturing techniques.

Practical implications

This study helps to improve the reliability of FFF parts and extend the application range of FFF technology.

Originality/value

A novel method to improve the forming quality of FFF parts is provided and the available information about the performance of dynamics characteristics.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 199