Search results

1 – 10 of 137
Article
Publication date: 15 August 2019

Diana Popescu, Aurelian Zapciu, Cristian Tarba and Dan Laptoiu

This paper aims to propose a new solution for producing customized three-dimensional (3D)-printed flat-shaped splints, which are then thermoformed to fit the patient’s hand. The…

Abstract

Purpose

This paper aims to propose a new solution for producing customized three-dimensional (3D)-printed flat-shaped splints, which are then thermoformed to fit the patient’s hand. The splint design process is automated and is available to clinicians through an online application.

Design/methodology/approach

Patient anthropometric data measured by clinicians are associated with variables of parametric 3D splint models. Once these variables are input by clinicians in the online app, customized stereo lithography (STL) files for both splint and half mold, in the case of the bi-material splint, are automatically generated and become available for download. Bi-materials splints are produced by a hybrid manufacturing process involving 3D printing and overmolding.

Findings

This approach eliminates the need for 3D CAD-proficient clinicians, allows fast generation of customized splints, generates two-dimensional (2D) drawings of splints for verifying shape and dimensions before 3D printing and generates the STL files. Automation reduces splint design time and cost, while manufacturing time is diminished by 3D printing the splint in a flat position.

Practical implications

The app could be used in clinical practice. It meets the demands of mass customization using 3D printing in a field where individualization is mandatory. The solution is scalable – it can be extended to other splint designs or to other limbs. 3D-printed tailored splints can offer improved wearing comfort and aesthetic appearance, while maintaining hand immobilization, allowing visually controlled follow-up for edema and rapidly observing the need for revision if necessary.

Originality/value

An online application was developed for uploading patient measurements and downloading 2D drawings and STL files of customized splints. Different models of splints can be designed and included in the database as alternative variants. A method for producing bi-materials flat splints combining soft and rigid polymers represents another novelty of the research.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 September 2021

Paulo Reis, Mariana Volpini, Joana Pimenta Maia, Igor Batista Guimarães, Cristiane Evelise, Maurício Monteiro and Juan Carlos Campos Rubio

The purpose of this study is to validate a novel model of resting hand splint manufactured by additive manufacturing (AM) and compare it with the traditional model manufactured by…

Abstract

Purpose

The purpose of this study is to validate a novel model of resting hand splint manufactured by additive manufacturing (AM) and compare it with the traditional model manufactured by high temperature thermoplastic in terms of cost, weight, volume and thermal comfort.

Design/methodology/approach

A novel resting hand splint model was created from the topology optimization (TO) and analyzed, by finite-element analysis, manufacturing cost and weight, with a traditional resting hand splint. A pilot clinical study was carried out to verify heat diffusion during the use of the two splints.

Findings

The results showed that compared with the traditional model, the novel model reduced the volume of material used by 35.48%, the weight of the orthosis by 17.56% and the maximum surface deformation by 171.17% when subjected to actuation forces. It was also verified that, when manufactured with Nylon by AM, the new model is 1.5 times cheaper than the traditional model made of Polypropylene. The result of the thermographic analysis showed greater temperature variation in the use of the traditional splint (+4.6°C) compared to the temperature variation observed in the nylon splint (2.1°C).

Practical implications

These results have as clinical relevance the demonstration of the feasibility of manufacturing functional orthoses that are more comfortable, cheaper and lighter than traditional ones.

Originality/value

This study describes the use of TO to manufacture a novel resting hand splint, which was compared with the commonly used traditional splint in terms of mechanical resistance, weight, cost and thermal comfort.

Details

Rapid Prototyping Journal, vol. 28 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 April 2015

Abby Megan Paterson, Richard Bibb, R. Ian Campbell and Guy Bingham

– The purpose of this paper is to compare four different additive manufacturing (AM) processes to assess their suitability in the context of upper extremity splinting.

2502

Abstract

Purpose

The purpose of this paper is to compare four different additive manufacturing (AM) processes to assess their suitability in the context of upper extremity splinting.

Design/methodology/approach

This paper describes the design characteristics and subsequent fabrication of six different wrist splints using four different AM processes: laser sintering (LS), fused deposition modelling (FDM), stereolithography (SLA) and polyjet material jetting via Objet Connex. The suitability of each process was then compared against competing designs and processes from traditional splinting. The splints were created using a digital design workflow that combined recognised clinical best practice with design for AM principles.

Findings

Research concluded that, based on currently available technology, FDM was considered the least suitable AM process for upper extremity splinting. LS, SLA and material jetting show promise for future applications, but further research and development into AM processes, materials and splint design optimisation is required if the full potential is to be realised.

Originality/value

Unlike previous work that has applied AM processes to replicate traditional splint designs, the splints described are based on a digital design for AM workflow, incorporating novel features and physical properties not previously possible in clinical splinting. The benefits of AM for customised splint fabrication have been summarised. A range of AM processes have also been evaluated for splinting, exposing the limitations of existing technology, demonstrating novel and advantageous design features and opportunities for future research.

Details

Rapid Prototyping Journal, vol. 21 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 May 2023

Ashwani Kumar and Deepak Chhabra

This study aims to explore the potential benefits favoring the adaptation of structural optimization techniques in the additive manufacturing (AM) of medical utilities to meet the…

Abstract

Purpose

This study aims to explore the potential benefits favoring the adaptation of structural optimization techniques in the additive manufacturing (AM) of medical utilities to meet the repetitive demand for functionally precise customized orthoses. Irregularities encountered during the conventional treatment of tendon injuries can be eschewed using advanced structural simulation in design and innovative splint fabrication using 3D printing.

Design/methodology/approach

A customized mallet finger splint designed from 3D scans was subjected to ANSYS topological simulation comprising multi-level weight reduction to retain optimal mass (100%, 90%, 80%, 70% and 60%). A batch of the four typical 3D printing materials was chosen to conduct a comparative mechanical and thermal stress analysis, facilitating the selection of the optimal one for fabricating functionally adaptive splints. Assurance of structural safety was accomplished through the experimental validation of simulation results against the testing data set of ASTM D695 and ASTM D638 Type-1 specimens over a universal testing machine (UTM). Fused deposition modeling (FDM) 3D printing processed the optimized splint fabrication to assist evaluation of weight reduction percentage, fitting aesthetics, appearance, comfort, practicality and ventilation ease at the user end.

Findings

AM efficacy can efficiently execute the design complexity involved in the topology optimization (TO) results and introduces rehabilitation practicality into the application. Topologically optimized splint provided with favorable comfort, stiffness and strengthening features, offers ventilation ease and structural stability for customized appliances, with 30.52% lighter weight and 121.37% faster heat dissipation than unoptimized one.

Originality/value

The state of art multidisciplinary optimization featured with structural and material optimization attributes can deliberately meet medical necessity for performance-oriented orthotic devices.

Details

Rapid Prototyping Journal, vol. 29 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 July 2022

Fatima Iftikhar, Suleman Anis, Umar Bin Asad, Shagufta Riaz, Muntaha Rafiq and Salman Naeem

Carpal tunnel syndrome (CTS) is a hand disease caused by the pressing of the median nerve present in the palmar side of the wrist. It causes severe pain in the wrist, triggering…

Abstract

Purpose

Carpal tunnel syndrome (CTS) is a hand disease caused by the pressing of the median nerve present in the palmar side of the wrist. It causes severe pain in the wrist, triggering disturbance during sleep. Different products like splints, braces and gloves are available in the market to alleviate this disease but there was still a need to improve the wearability, comfort and cost of the product. This study was about designing a comfortable and cost-effective wearable system for mild-to-moderate CTS. Transcutaneous electrical nerve stimulation (TENS) therapy has been used to reduce the pain in the wrist.

Design/methodology/approach

After simulation by using Proteus software (which allowed the researchers to draw and simulate electrical circuits using ISIS, ARES and PCB design tools virtually), the circuit with optimum frequency, i.e. 33 Hz was selected, and the circuit was developed on a printed circuit board (PCB). The developed circuit was integrated successfully into the half glove structure.

Findings

The developed product had good thermophysiological comfort and hand properties as compared to the commercially available product of the same kind. In vivo testing (It involves the testing with living subjects like animals, plants or human beings) was performed which resulted in 85% confirmed viability of the product against CTS. A glove with an integrated circuit was developed successfully to accommodate various sizes without any sex specifications in a cost-effective way to mitigate the issue of CTS.

Research limitations/implications

Industrial workers, individuals frequently using their hands or those diagnosed with CTS may wish to use this product as therapy. The attention could not be paid to the aesthetic or visual appeal of the developed product.

Originality/value

A very comfortable glove with integrated TENS electrodes was developed successfully to accommodate various sizes without any sex specifications in a cost-effective way to mitigate the issues of CTS.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 17 October 2017

Miguel Fernandez-Vicente, Ana Escario Chust and Andres Conejero

The purpose of this paper is to describe a novel design workflow for the digital fabrication of custom-made orthoses (CMIO). It is intended to provide an easier process for…

Abstract

Purpose

The purpose of this paper is to describe a novel design workflow for the digital fabrication of custom-made orthoses (CMIO). It is intended to provide an easier process for clinical practitioners and orthotic technicians alike. It further functions to reduce the dependency of the operators’ abilities and skills.

Design/methodology/approach

The technical assessment covers low-cost three-dimensional (3D) scanning, free computer-aided design (CAD) software, and desktop 3D printing and acetone vapour finishing. To analyse its viability, a cost comparison was carried out between the proposed workflow and the traditional CMIO manufacture method.

Findings

The results show that the proposed workflow is a technically feasible and cost-effective solution to improve upon the traditional process of design and manufacture of custom-made static trapeziometacarpal (TMC) orthoses. Further studies are needed for ensuring a clinically feasible approach and for estimating the efficacy of the method for the recovery process in patients.

Social implications

The feasibility of the process increases the impact of the study, as the great accessibility to this type of 3D printers makes the digital fabrication method easier to be adopted by operators.

Originality/value

Although some research has been conducted on digital fabrication of CMIO, few studies have investigated the use of desktop 3D printing in any systematic way. This study provides a first step in the exploration of a new design workflow using low-cost digital fabrication tools combined with non-manual finishing.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Book part
Publication date: 28 January 2011

Barbara M. Fulk, Emily Watts and Jeffrey P. Bakken

Throughout the ages, caring for an individual with a significant physical disability and/or health impairment has been extremely difficult or perhaps even impossible. Conditions…

Abstract

Throughout the ages, caring for an individual with a significant physical disability and/or health impairment has been extremely difficult or perhaps even impossible. Conditions for survival were often hard, requiring all able-bodied family members working from dawn until dark to scratch out even a minimal standard of living. Consequently, little time and resources were available for the care of a loved one with a disability. Safford and Safford's sobering volume (1996) emphasizes that children have always been vulnerable to neglect and children with disabilities were particularly subject to abuse. To illustrate this, children with disabilities were particularly subject to infanticide, abandonment, slavery, sterilization or placed in orphanages, where maiming sometimes occurred to increase the individuals' potential for street corner begging.

Details

History of Special Education
Type: Book
ISBN: 978-0-85724-629-5

Article
Publication date: 16 June 2021

Rohan Prabhu, Jordan Scott Masia, Joseph T. Berthel, Nicholas Alexander Meisel and Timothy W. Simpson

The COVID-19 pandemic has resulted in numerous innovative engineering design solutions, several of which leverage the rapid prototyping and manufacturing capabilities of additive…

Abstract

Purpose

The COVID-19 pandemic has resulted in numerous innovative engineering design solutions, several of which leverage the rapid prototyping and manufacturing capabilities of additive manufacturing. This paper aims to study a subset of these solutions for their utilization of design for AM (DfAM) techniques and investigate the effects of DfAM utilization on the creativity and manufacturing efficiency of these solutions.

Design/methodology/approach

This study compiled 26 COVID-19-related solutions designed for AM spanning three categories: (1) face shields (N = 6), (2) face masks (N = 12) and (3) hands-free door openers (N = 8). These solutions were assessed for (1) DfAM utilization, (2) manufacturing efficiency and (3) creativity. The relationships between these assessments were then computed using generalized linear models to investigate the influence of DfAM utilization on manufacturing efficiency and creativity.

Findings

It is observed that (1) unique and original designs scored lower in their AM suitability, (2) solutions with higher complexity scored higher on usefulness and overall creativity and (3) solutions with higher complexity had higher build cost, build time and material usage. These findings highlight the need to account for both opportunistic and restrictive DfAM when evaluating solutions designed for AM. Balancing the two DfAM perspectives can support the development of solutions that are creative and consume fewer build resources.

Originality/value

DfAM evaluation tools primarily focus on AM limitations to help designers avoid build failures. This paper proposes the need to assess designs for both, their opportunistic and restrictive DfAM utilization to appropriately assess the manufacturing efficiency of designs and to realize the creative potential of adopting AM.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 August 2023

Ashish Kaushik and Ramesh Kumar Garg

This study aims to cover the overall gamut of rapid prototyping processes and biomaterials used for the fabrication of occlusal splints in a comprehensive manner and elucidate the…

Abstract

Purpose

This study aims to cover the overall gamut of rapid prototyping processes and biomaterials used for the fabrication of occlusal splints in a comprehensive manner and elucidate the characteristics of the materials, which are essential in determining their clinical efficacy when exposed to oral surroundings.

Design/methodology/approach

A collective analysis of published articles covering the use of rapid prototyping technologies in the fabrication of occlusal splints, including manufacturing workflow description and essential properties (mechanical- and thermal-based) evaluation of biocompatible splinting materials, was performed.

Findings

Without advances in rapid prototyping processes and materials engineering, occlusal splints would tend to underperform clinically due to biomechanical limitations.

Social implications

Three-dimensional printing can improve the process capabilities for commercial customization of biomechanically efficient occlusal splints.

Originality/value

Rapid technological advancement in dentistry with the extensive utilization of rapid prototyping processes, intra-oral scanners and novel biomaterial seems to be the potential breakthrough in the fabrication of customized occlusal splints which have endorsed occlusal splint therapy (OST) as a cornerstone of orthodontic treatment.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 January 2015

M. Jiménez, L. Romero, M. Domínguez and M.M. Espinosa

– This paper aims to present an optimal prototyping technology for the manufacture of occlusal splints.

2284

Abstract

Purpose

This paper aims to present an optimal prototyping technology for the manufacture of occlusal splints.

Design/methodology/approach

To carry out this study, a comparative technique was used to analyze models obtained by different prototyping techniques. Subsequently, further tests were carried out with respect to the manufacturing of splints by means of thermoforming in a vacuum. This involved an analysis of the most important variables such as prototype material, geometric accuracy, surface finish and costs.

Findings

It was found that there is a group of prototyping technologies that are suitable for the manufacture of the models used in the thermoforming of correction splints, the most appropriate technologies being based on ink jet printing (IJP-Objet), ultraviolet photo polymerization and fused deposition modelling due to the fact that they offer an optimal relationship between the cost and the quality of the model required for thermoforming.

Practical implications

The application of rapid prototyping techniques in medicine makes the production of physical models from three-dimensional medical image processing and their subsequent use in different specialties possible. It also makes preoperative planning processes, the production of prostheses and the preparation of surgical templates possible, thereby offering a higher quality of diagnosis, safer surgery and cost and time savings compared to conventional manufacturing technologies.

Originality/value

This paper suggests that there exists a group of prototyping technologies for the manufacture of splints that offer advantages over existing technologies. The results also suggest that, in many cases, the most expensive technology is not the most appropriate: there are other options that provide an optimal model in terms of the cost and the quality needed for thermoforming.

Details

Rapid Prototyping Journal, vol. 21 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 137