Search results

1 – 10 of 96
Open Access
Article
Publication date: 27 November 2023

J.I. Ramos and Carmen María García López

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the…

229

Abstract

Purpose

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the propagation of small-amplitude waves in shallow water, as a function of the relaxation time, linear and nonlinear drift, power of the nonlinear advection flux, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of three types of initial conditions.

Design/methodology/approach

An implicit, first-order accurate in time, finite difference method valid for semipositive relaxation times has been used to solve the equation in a truncated domain for three different initial conditions, a first-order time derivative initially equal to zero and several constant wave speeds.

Findings

The numerical experiments show a very rapid transient from the initial conditions to the formation of a leading propagating wave, whose duration depends strongly on the shape, amplitude and width of the initial data as well as on the coefficients of the bidirectional equation. The blowup times for the triangular conditions have been found to be larger than those for the Gaussian ones, and the latter are larger than those for rectangular conditions, thus indicating that the blowup time decreases as the smoothness of the initial conditions decreases. The blowup time has also been found to decrease as the relaxation time, degree of nonlinearity, linear drift coefficient and amplitude of the initial conditions are increased, and as the width of the initial condition is decreased, but it increases as the viscosity coefficient is increased. No blowup has been observed for relaxation times smaller than one-hundredth, viscosity coefficients larger than ten-thousandths, quadratic and cubic nonlinearities, and initial Gaussian, triangular and rectangular conditions of unity amplitude.

Originality/value

The blowup of a one-dimensional, bidirectional equation that is a model for the propagation of waves in shallow water, longitudinal displacement in homogeneous viscoelastic bars, nerve conduction, nonlinear acoustics and heat transfer in very small devices and/or at very high transfer rates has been determined numerically as a function of the linear and nonlinear drift coefficients, power of the nonlinear drift, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of the initial conditions for nonzero relaxation times.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 16 June 2021

Zrinka Buhin Šturlić, Mirela Leskovac, Krunoslav Žižek and Sanja Lučić Blagojević

The purpose of this paper is to prepare stabile emulsions with 0–15% of colloidal silica and high monomer/water ratio and to investigate the influence of silica addition and…

1211

Abstract

Purpose

The purpose of this paper is to prepare stabile emulsions with 0–15% of colloidal silica and high monomer/water ratio and to investigate the influence of silica addition and surface modification on the polyacrylate properties.

Design/methodology/approach

Improving the properties of the composite can be achieved by optimizing the compatibility between the phases of the composite system with improving the interactions at the matrix/filler interface. Therefore, the silica surface was modified with nonionic emulsifier octylphenol ethoxylate, cationic initiator 2,2'-azobis-(amidinopropane dihydrochloride) and 3-methacryloxypropyltrimethoxysilane and polyacrylate/silica nanocomposites were prepared via in situ emulsion polymerization. Particle size distribution, rheological properties of the emulsions and morphology, thermal properties and mechanical properties of the film prepared from the emulsions were investigated.

Findings

Polyacrylate/silica systems with unmodified silica, silica modified with nonionic emulsifier and cationic initiator have micrometer, while pure PA matrix and systems with silica modified with silane have nanometer particle sizes. Addition and surface modification of the filler increased emulsion viscosity. Agglomeration of silica particles in composites was reduced with silica surface modification. Silica filler improves thermal stability and tensile strength of polyacrylate.

Originality/value

This paper provides broad spectrum of information depending on filler surface modification and latex preparation via in situ emulsion polymerization and properties with high amount of filler and monomer/water ratio with the aim that prepared latex is suitable for film formation and final application.

Details

Pigment & Resin Technology, vol. 51 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 25 July 2022

Cara Greta Kolb, Maja Lehmann, Johannes Kriegler, Jana-Lorena Lindemann, Andreas Bachmann and Michael Friedrich Zaeh

This paper aims to present a requirements analysis for the processing of water-based electrode dispersions in inkjet printing.

931

Abstract

Purpose

This paper aims to present a requirements analysis for the processing of water-based electrode dispersions in inkjet printing.

Design/methodology/approach

A detailed examination of the components and the associated properties of the electrode dispersions has been carried out. The requirements of the printing process and the resulting performance characteristics of the electrode dispersions were analyzed in a top–down approach. The product and process side were compared, and the target specifications of the dispersion components were derived.

Findings

Target ranges have been identified for the main component properties, balancing the partly conflicting goals between the product and the process requirements.

Practical implications

The findings are expected to assist with the formulation of electrode dispersions as printing inks.

Originality/value

Little knowledge is available regarding the particular requirements arising from the systematic qualification of aqueous electrode dispersions for inkjet printing. This paper addresses these requirements, covering both product and process specifications.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 29 June 2021

C. Ahamed Saleel, Saad Ayed Alshahrani, Asif Afzal, Maughal Ahmed Ali Baig, Sarfaraz Kamangar and T.M. Yunus Khan

Joule heating effect is a pervasive phenomenon in electro-osmotic flow because of the applied electric field and fluid electrical resistivity across the microchannels. Its effect…

614

Abstract

Purpose

Joule heating effect is a pervasive phenomenon in electro-osmotic flow because of the applied electric field and fluid electrical resistivity across the microchannels. Its effect in electro-osmotic flow field is an important mechanism to control the flow inside the microchannels and it includes numerous applications.

Design/methodology/approach

This research article details the numerical investigation on alterations in the profile of stream wise velocity of simple Couette-electroosmotic flow and pressure driven electro-osmotic Couette flow by the dynamic viscosity variations happened due to the Joule heating effect throughout the dielectric fluid usually observed in various microfluidic devices.

Findings

The advantages of the Joule heating effect are not only to control the velocity in microchannels but also to act as an active method to enhance the mixing efficiency. The results of numerical investigations reveal that the thermal field due to Joule heating effect causes considerable variation of dynamic viscosity across the microchannel to initiate a shear flow when EDL (Electrical Double Layer) thickness is increased and is being varied across the channel.

Originality/value

This research work suggest how joule heating can be used as en effective mechanism for flow control in microfluidic devices.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 2
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 5 September 2023

Ali Akbar Izadi and Hamed Rasam

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data…

Abstract

Purpose

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data processing speeds. This study aims to explore the thermal performance of a CPU cooling setup using a cylindrical porous metal foam heat sink.

Design/methodology/approach

Nanofluid flow through the metal foam is simulated using the Darcy–Brinkman–Forschheimer equation, accounting for magnetic field effects. The temperature distribution is modeled through the local thermal equilibrium equation, considering viscous dissipation. The problem’s governing partial differential equations are solved using the similarity method. The CPU’s hot surface serves as a solid wall, with nanofluid entering the heat sink as an impinging jet. Verification of the numerical results involves comparison with existing research, demonstrating strong agreement across numerical, analytical and experimental findings. Ansys Fluent® software is used to assess temperature, velocity and streamlines, yielding satisfactory results from an engineering standpoint.

Findings

Investigating critical parameters such as Darcy number (10−4DaD ≤ 10−2), aspect ratio (0.5 ≤ H/D ≤ 1.5), Reynolds number (5 ≤ ReD,bf ≤ 3500), Eckert number (0 ≤ ECbf ≤ 0.1) , porosity (0.85 ≤ ε ≤ 0.95), Hartmann number (0 ≤ HaD,bf ≤ 300) and the volume fraction of nanofluid (0 ≤ φ ≤ 0.1) reveals their impact on fluid flow and heat sink performance. Notably, Nusselt number will reduce 45%, rise 19.2%, decrease 14.1%, and decrease 0.15% for Reynolds numbers of 600, with rising porosity from 0.85 to 0.95, Darcy numbers from 10−4 to 10−2, Eckert numbers from 0 to 0.1, and Hartman numbers from 0 to 300.

Originality/value

Despite notable progress in studying thermal management in CPU cooling systems using porous media and nanofluids, there are still significant gaps in the existing literature. First, few studies have considered the Darcy–Brinkman–Forchheimer equation, which accounts for non-Darcy effects and the flow and geometric interactions between coolant and porous medium. The influence of viscous dissipation on heat transfer in this specific geometry has also been largely overlooked. Additionally, while nanofluids and impinging jets have demonstrated potential in enhancing thermal performance, their utilization within porous media remains underexplored. Furthermore, the unique thermal and structural characteristics of porous media, along with the incorporation of a magnetic field, have not been fully investigated in this particular configuration. Consequently, this study aims to address these literature gaps and introduce novel advancements in analytical modeling, non-Darcy flow, viscous dissipation, nanofluid utilization, impinging jets, porous media characteristics and the impact of a magnetic field. These contributions hold promising prospects for improving CPU cooling system thermal management and have broader implications across various applications in the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 7 August 2020

Yee Vern Ng, Tengku Alina Tengku Ismail and Wan Rosli Wan Ishak

Demand for dietary fibre-enriched and low sugar bakery products is increasing rapidly due to current high incidence of type 2 diabetes mellitus. Overripe banana has been discarded…

3863

Abstract

Purpose

Demand for dietary fibre-enriched and low sugar bakery products is increasing rapidly due to current high incidence of type 2 diabetes mellitus. Overripe banana has been discarded due to its low quality and appearance. However, overripe banana exhibits rich sources of natural sweetener and dietary fibre which could potentially be used as a novel food ingredient in bakery product. Thus, the study aims to determine the nutritional properties, sensory acceptability and glycaemic index (GI) value of chocolate cookies formulated with overripe banana sweetener (OBS) as partial replacement (10, 15 and 20%) for table sugar and utilization of overripe banana residue (OBR) as partial replacement (8%) for wheat flour.

Design/methodology/approach

Nutritional composition was analysed using AOAC methods and sensory acceptability using 7-point hedonic scaling method. In Vivo GI determination was continued according to FAO/WHO method.

Findings

Incorporation of OBR and OBS significantly (p < 0.05) increased nutritional values of chocolate cookies. Chocolate cookies formulated with 8% OBR +20% OBS recorded the highest TDF (7.80%) and ash (1.47%) content. Sucrose content of chocolate cookies was reduced significantly with increasing level of OBS. Sensory scores for control and 8% OBR-incorporated cookie were not significant difference for all the sensory attributes. Moreover, incorporation of OBS up to 15% produced higher scores in term of aroma, flavour and overall acceptance. Three formulations of chocolate cookies (control, 8% OBR and 8% OBR +15% OBS) were selected for GI testing and recorded GI values of 63, 56 and 50, respectively.

Originality/value

Overripe banana can be used as a food ingredient in developing high fibre and low-GI cookie.

Details

British Food Journal, vol. 122 no. 10
Type: Research Article
ISSN: 0007-070X

Keywords

Open Access
Article
Publication date: 8 December 2023

Flaviana Calignano, Alessandro Bove, Vincenza Mercurio and Giovanni Marchiandi

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing…

483

Abstract

Purpose

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing the fabrication of gears without the aid of support structures and subsequent assembly. However, there are constraints in the process that negatively affect its adoption compared to other additive technologies such as material extrusion to produce gears. This study aims to demonstrate that it is possible to overcome the problems due to the physics of the process to produce accurate mechanism.

Design/methodology/approach

Technological aspects such as orientation, wheel-shaft thicknesses and degree of powder recycling were examined. Furthermore, the evolving tooth profile was considered as a design parameter to provide a manufacturability map of gear-based mechanisms.

Findings

Results show that there are some differences in the functioning of the gear depending on the type of powder used, 100% virgin or 50% virgin and 50% recycled for five cycles. The application of a groove on a gear produced with 100% virgin powder allows the mechanism to be easily unlocked regardless of the orientation and wheel-shaft thicknesses. The application of a specific evolutionary profile independent of the diameter of the reference circle on vertically oriented gears guarantees rotation continuity while preserving the functionality of the assembled mechanism.

Originality/value

In the literature, there are various studies on material aging and reuse in the PBF-LB/P process, mainly focused on the powder deterioration mechanism, powder fluidity, microstructure and mechanical properties of the parts and process parameters. This study, instead, was focused on the functioning of gears, which represent one of the applications in which this technology can have great success, by analyzing the two main effects that can compromise it: recycled powder and vertical orientation during construction.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 16 November 2015

Pablo Ballesteros-Pérez, Maria Luisa del Campo-Hitschfeld, Manuel Alejandro González-Naranjo and Mari Carmen González-Cruz

Construction projects usually suffer delays, and the causes of these delays and its cost overruns have been widely discussed, the weather being one of the most recurrent. The…

10134

Abstract

Purpose

Construction projects usually suffer delays, and the causes of these delays and its cost overruns have been widely discussed, the weather being one of the most recurrent. The purpose of this paper is to analyze the influence of climate on standard construction work activities through a case study.

Design/methodology/approach

By studying the extent at which some weather variables impede outdoor work from being effectively executed, new maps and tables for planning for delays are presented. In addition, a real case regarding the construction of several bridges in southern Chile is analyzed.

Findings

Few studies have thoroughly addressed the influences of major climatic agents on the most common outdoor construction activities. The method detailed here provides a first approximation for construction planners to assess to what extent construction productivity will be influenced by the climate.

Research limitations/implications

Although this study was performed in Chile, the simplified method proposed is entirely transferable to any other country, however, other weather or combinations of weather variables could be needed in other environments or countries.

Practical implications

The implications will help reducing the negative social, economic and environmental outcomes that usually emerge from project delays.

Originality/value

Climatic data were processed using extremely simple calculations to create a series of quantitative maps and tables that would be useful for any construction planner to decide the best moment of the year to start a project and, if possible, where to build it.

Details

Engineering, Construction and Architectural Management, vol. 22 no. 6
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 17 December 2018

Khavhatondwi Rinah Netshiheni, Mpho Edward Mashau and Afam Israel Obiefuna Jideani

White maize-based porridge is a staple food for about 80 per cent consumers in South Africa and in other sub-Saharan African countries contributing significantly to the diet of…

5091

Abstract

Purpose

White maize-based porridge is a staple food for about 80 per cent consumers in South Africa and in other sub-Saharan African countries contributing significantly to the diet of rural population in developing countries. White maize is deficient in some amino acids and over-dependency on its porridge may lead to high prevalence of malnutrition-related health conditions. Moringa oleifera (MO) and termite (Macrotermes falciger) are known to contain substantial amount of protein. The purpose of this study was to determine the effect of powders from MO leaves and termite on the nutritional and sensory properties of instant maize porridge.

Design/methodology/approach

Inclusion of MO and termite powder in instant maize porridge, using different treatments were considered using a completely randomised design. Factor levels were control (maize flour) cooked, blanched and uncooked MO samples. Data were analysed using SPSS version 23.

Findings

Protein content of fortified instant maize porridge (FMP) significantly increased from 10.0 to 21.2 per cent compared to unfortified porridge, and this could be attributed to the substitution effect, as fresh uncooked MO leaves are reported to be high in protein. Mineral content of FMP was higher in zinc, iron, calcium and magnesium. Calcium values of FMP were higher (276.8 mg/100 g) compared to unfortified porridge (7.1 mg/100 g). Upon the addition of MO leaves and termite powder, the zinc content increased from 3.4 mg/100to 7.6 mg/100 g. Higher iron values (27.9-36.9 mg/100 g) were observed among fortified samples. The sensory result showed that control sample had higher acceptance than the fortified samples (p = 0.02). Sensory analysis showed that among fortified porridges, blanched sample was rated high for colour and texture, cooked sample was higher in taste and uncooked sample was higher for aroma. Control sample had higher acceptance than fortified porridges for taste. The results of this study showed that the addition of MO leaves and termite powder to instant maize porridge has led to a substantial increase in the nutritional value of FMP.

Originality/value

This study was carried out to develop instant maize porridge fortified with MO leaves and termite powder suitable for infants, pregnant mothers and other maize consumers. The author aimed at improving the nutritional content of instant maize porridge by combining it with MO leaves and termite powders. The results showed that the addition of MO leaves and termite powders to instant maize porridge has led to a substantial increase in the nutritional value of FMP. Therefore, powder from MO leaves and termites could be used in complementary foods to increase protein and mineral contents.

Details

Nutrition & Food Science, vol. 49 no. 4
Type: Research Article
ISSN: 0034-6659

Keywords

Open Access
Article
Publication date: 29 May 2019

Marjo Määttänen, Sari Asikainen, Taina Kamppuri, Elina Ilen, Kirsi Niinimäki, Marjaana Tanttu and Ali Harlin

While aiming to create methods for fibre recycling, the question of colours in waste textiles is also in focus; whether the colour should be kept or should be removed while…

5498

Abstract

Purpose

While aiming to create methods for fibre recycling, the question of colours in waste textiles is also in focus; whether the colour should be kept or should be removed while recycling textile fibre. More knowledge is needed for colour management in a circular economy approach.

Design/methodology/approach

The research included the use of different dye types in a cotton dyeing process, the process for decolourizing and the results. Two reactive dyes, two direct dyes and one vat dye were used in the study. Four chemical treatment sequences were used to evaluate colour removal from the dyed cotton fabrics, namely, HCE-A, HCE-P-A, HCE-Z-P-A and HCE-Y-A.

Findings

The objective was to evaluate how different chemical refining sequences remove colour from direct, reactive and vat dyed cotton fabrics, and how they influence the specific cellulose properties. Dyeing methods and the used refining sequences influence the degree of colour removal. The highest achieved final brightness of refined cotton materials were between 71 and 91 per cent ISO brightness, depending on the dyeing method used.

Research limitations/implications

Only cotton fibre and three different colour types were tested.

Practical implications

With cotton waste, it appears to be easier to remove the colour than to retain it, especially if the textile contains polyester residues, which are desired to be removed in the textile refining stage.

Originality/value

Colour management in the CE context is an important new track to study in the context of the increasing amount of textile waste used as a raw material.

Details

Research Journal of Textile and Apparel, vol. 23 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 96