Search results

1 – 10 of over 32000
Article
Publication date: 16 September 2013

Sima Samadpoor, Hadi Roohani Ghehsareh and Saeid Abbasbandy

The purpose of this paper is to obtain semi-analytical solutions of similarity solutions for the nano boundary layer flows with Navier boundary condition. The similarity solutions

Abstract

Purpose

The purpose of this paper is to obtain semi-analytical solutions of similarity solutions for the nano boundary layer flows with Navier boundary condition. The similarity solutions of viscous flows over a two-dimensional stretching surface and an axisymmetric stretching surface are investigated.

Design/methodology/approach

In this work, the governing partial differential equations are transformed to a nonlinear ordinary differential equation by using some proper similarity transformations. Then an efficient semi-analytical method, the Laplace Adomian decomposition method (LADM) is applied to obtain semi-analytical solutions of the similarity solutions in both of viscous flows over a two-dimensional stretching surface and an axisymmetric stretching surface. To improve the accuracy and enlarges the convergence domain of the obtained results by the LADM, the study has combined it with Padé approximation.

Findings

Accuracy and efficiency of the presented method are illustrated and denoted through the tables and figures. Also the effects of the suction parameter λ and slip parameter K on the fluid velocity and on the tangential stress are investigated.

Originality/value

The similarity solutions of the governing partial differential equation are obtained analytically by using an efficient developed method, namely the Laplace Adomian decomposition-Padé method. The analytic solutions of nonlinear ordinary differential equation are constructed for both of viscous flows over a two-dimensional stretching surface and an axisymmetric stretching surface.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 December 2018

Amin Jafarimoghaddam and Ioan Pop

The purpose of this study is to present a simple analytic solution to wall jet flow of nanofluids. The concept of exponentially decaying wall jet flows proposed by Glauert (1956)

Abstract

Purpose

The purpose of this study is to present a simple analytic solution to wall jet flow of nanofluids. The concept of exponentially decaying wall jet flows proposed by Glauert (1956) is considered.

Design/methodology/approach

A proper similarity variables are used to transform the system of partial differential equations into a system of ordinary (similarity) differential equations. This system is then solved analytically.

Findings

Dual solutions are found and a stability analysis has been done. These solutions show that the first solution is physically realizable, whereas the second solution is not practicable.

Originality/value

The present results are original and new for the study of fluid flow and heat transfer over a static permeable wall, as they successfully extend the problem considered by Glauert (1956) to the case of nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 January 2017

Natalia C. Rosca, Alin V. Rosca, John H. Merkin and Ioan Pop

The purpose of this study is to consider the effects that buoyancy arising from the combination of both thermal and concentration gradients can have on the mixed convection…

Abstract

Purpose

The purpose of this study is to consider the effects that buoyancy arising from the combination of both thermal and concentration gradients can have on the mixed convection boundary-layer flow near a forward stagnation point with the effect of Stefan blowing being included. Ad suitable choice for the functional forms of the outer flow and the wall temperature and concentration enables the problem to be reduced to a similarity form involving the dimensionless parameters, λ (mixed convection), κ (Stefan blowing) and N (relative strength of concentration driven buoyancy to that of thermal driven), as well as the Prandtl and Schmidt numbers. Numerical solutions to this similarity system for a range of representative parameter values indicate a finite, non-zero range of κ where there can be four solutions in opposing flow with only one solution in aiding flow. Asymptotic solutions for large values of N and κ are derived, the latter having two different structures in the opposing flow.

Design/methodology/approach

This paper sets up a similarity problem to examine the effects of Stefan blowing on a mixed convection flow with the aims of solving the equations numerically and complementing the results with appropriate asymptotic analysis.

Findings

The findings of the study include multiple solution branches, saddle-node bifurcations and singularities appearing in the solution.

Originality/value

The authors believe that all the results, both numerical and asymptotic, are original and have not been published elsewhere.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 March 2013

Peter Paul Beran, Elisabeth Vinek and Erich Schikuta

The optimization of quality‐of‐service (QoS) aware service selection problems is a crucial issue in both grids and distributed service‐oriented systems. When several…

Abstract

Purpose

The optimization of quality‐of‐service (QoS) aware service selection problems is a crucial issue in both grids and distributed service‐oriented systems. When several implementations per service exist, one has to be selected for each workflow step. This paper aims to address these issues.

Design/methodology/approach

The authors proposed several heuristics with specific focus on blackboard and genetic algorithms. Their applicability and performance has already been assessed for static systems. In order to cover real‐world scenarios, the approaches are required to deal with dynamics of distributed systems.

Findings

The proposed algorithms prove their feasibility in terms of scalability and runtime performance, taking into account their adaptability to system changes.

Research limitations/implications

In this paper, the authors propose a representation of the dynamic aspects of distributed systems and enhance their algorithms to efficiently capture them.

Practical implications

By combining both algorithms, the authors envision a global approach to QoS‐aware service selection applicable to static and dynamic systems.

Originality/value

The authors prove the feasibility of their hybrid approach by deploying the algorithms in a cloud environment (Google App Engine), that allows simulating and evaluating different system configurations.

Details

International Journal of Web Information Systems, vol. 9 no. 1
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 2 March 2015

M.M. Rahman, Alin V. Rosca and I. Pop

The purpose of this paper is to numerically solve the problem of steady boundary layer flow of a nanofluid past a permeable exponentially shrinking surface with convective surface…

Abstract

Purpose

The purpose of this paper is to numerically solve the problem of steady boundary layer flow of a nanofluid past a permeable exponentially shrinking surface with convective surface condition. The Buongiorno’s mathematical nanofluid model has been used.

Design/methodology/approach

Using appropriate similarity transformations, the basic partial differential equations are transformed into ordinary differential equations. These equations have been solved numerically for different values of the governing parameters, stretching/shrinking parameter λ, suction parameter s, Prandtl number Pr, Lewis number Le, Biot number, the Brownian motion parameter Nb and the thermophoresis parameter Nt, using the bvp4c function from Matlab. The effects of these parameters on the reduced skin friction coefficient, heat transfer from the surface of the sheet, Sherwood number, dimensionless velocity, and temperature and nanoparticles volume fraction distributions are presented in tables and graphs, and are in details discussed.

Findings

Numerical results are obtained for the reduced skin-friction, heat transfer and for the velocity and temperature profiles. The results indicate that dual solutions exist for the shrinking case (λ<0). A stability analysis has been performed to show that the upper branch solutions are stable and physically realizable, while the lower branch solutions are not stable and, therefore, not physically possible. In addition, it is shown that for a regular fluid (Nb=Nt=0) a very good agreement exists between the present numerical results and those reported in the open literature.

Research limitations/implications

The problem is formulated for an incompressible nanofluid with no chemical reactions, dilute mixture, negligible viscous dissipation, negligible radiative heat transfer and a new boundary condition is imposed on nanoparticles and base fluid locally in thermal equilibrium. The analysis reveals that the boundary layer separates from the plate. Beyond the turning point it is not possible to get the solution based on the boundary-layer approximations. To obtain further solutions, the full basic partial differential equations have to be solved.

Originality/value

The present results are original and new for the boundary-layer flow and heat transfer past a shrinking sheet in a nanofluid. Therefore, this study would be important for the researchers working in the relatively new area of nanofluids in order to become familiar with the flow behavior and properties of such nanofluids. The results show that in the presence of suction the dual solutions may exist for the flow of a nanofluid over an exponentially shrinking as well as stretching surface.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2017

Giulia Giantesio, Anna Verna, Natalia C. Roşca, Alin V. Rosca and Ioan Pop

This paper aims to study the problem of the steady plane oblique stagnation-point flow of an electrically conducting Newtonian fluid impinging on a heated vertical sheet. The…

Abstract

Purpose

This paper aims to study the problem of the steady plane oblique stagnation-point flow of an electrically conducting Newtonian fluid impinging on a heated vertical sheet. The temperature of the plate varies linearly with the distance from the stagnation point.

Design/methodology/approach

The governing boundary layer equations are transformed into a system of ordinary differential equations using the similarity transformations. The system is then solved numerically using the “bvp4c” function in MATLAB.

Findings

An exact similarity solution of the magnetohydrodynamic (MHD) Navier–Stokes equations under the Boussinesq approximation is obtained. Numerical solutions of the relevant functions and the structure of the flow field are presented and discussed for several values of the parameters which influence the motion: the Hartmann number, the parameter describing the oblique part of the motion, the Prandtl number (Pr) and the Richardson numbers. Dual solutions exist for several values of the parameters.

Originality value

The present results are original and new for the problem of MHD mixed convection oblique stagnation-point flow of a Newtonian fluid over a vertical flat plate, with the effect of induced magnetic field and temperature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 August 2021

Nur Syahirah Wahid, Norihan Md Arifin, Najiyah Safwa Khashi'ie, Ioan Pop, Norfifah Bachok and Ezad Hafidz Hafidzuddin

The purpose of this paper is to numerically investigate the hybrid nanofluid flow with the imposition of magnetohydrodynamic (MHD) and radiation effects alongside the convective…

Abstract

Purpose

The purpose of this paper is to numerically investigate the hybrid nanofluid flow with the imposition of magnetohydrodynamic (MHD) and radiation effects alongside the convective boundary conditions over a permeable stretching/shrinking surface.

Design/methodology/approach

The mathematical model is formulated in the form of partial differential equations (PDEs) and are then transformed into the form of ordinary differential equations (ODEs) by using the similarity variables. The deriving ODEs are solved numerically by using the bvp4c solver in MATLAB software. Stability analysis also has been performed to determine the stable solution among the dual solutions obtain. For method validation purposes, a comparison of numerical results has been made with the previous studies.

Findings

The flow and the heat transfer of the fluid at the boundary layer are described through the plot of the velocity profile, temperature profile, skin friction coefficient and local Nusselt number that are presented graphically. Dual solutions are obtained, but only the first solution is stable. For the realizable solution at the shrinking surface, the proliferation of nanoparticle volume fraction (copper) and magnetic (magnetohydrodynamics) parameters can impede the boundary layer separation. Also, Biot number could enhance the temperature profile and the heat transfer rate at the shrinking surface region. The incrementation of 0.1% of Biot number has enhanced the heat transfer rate by approximately 0.1% and the incrementation of 0.5% volume fraction for copper has reduced the heat transfer rate by approximately 0.17%.

Originality/value

The presented model and numerical results are original and new. It can be used as a future reference for further investigation and related practical application. The main contribution of this investigation includes giving the initial prediction and providing the numerical data for the other researchers for their future reference regarding the impacts of nanoparticles volumetric concentration towards the main physical quantities of interest in the presence of magnetic and radiation parameters with the convective boundary conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 December 2018

Vasu B. and Atul Kumar Ray

To achieve material-invariant formulation for heat transfer of Carreau nanofluid, the effect of Cattaneo–Christov heat flux is studied on a natural convective flow of Carreau…

Abstract

Purpose

To achieve material-invariant formulation for heat transfer of Carreau nanofluid, the effect of Cattaneo–Christov heat flux is studied on a natural convective flow of Carreau nanofluid past a vertical plate with the periodic variations of surface temperature and the concentration of species. Buongiorno model is considered for nanofluid transport, which includes the relative slip mechanisms, Brownian motion and thermophoresis.

Design/methodology/approach

The governing equations are non-dimensionalized using suitable transformations, further reduced to non-similar form using stream function formulation and solved by local non-similarity method with homotopy analysis method. The numerical computations are validated and verified by comparing with earlier published results and are found to be in good agreement.

Findings

The effects of varying the physical parameters such as Prandtl number, Schmidt number, Weissenberg number, thermophoresis parameter, Brownian motion parameter and buoyancy ratio parameter on velocity, temperature and species concentration are discussed and presented through graphs. The results explored that the velocity of shear thinning fluid is raised by increasing the Weissenberg number, while contrary response is seen for the shear thickening fluid. It is also found that heat transfer in Cattaneo–Christov heat conduction model is less than that in Fourier’s heat conduction model. Furthermore, the temperature and thermal boundary layer thickness expand with the increase in thermophoresis and Brownian motion parameter, whereas nanoparticle volume fraction increases with increase in thermophoresis parameter, but reverse trend is observed with increase in Brownian motion parameter.

Originality/value

The present investigation is relatively original as very little research has been reported on Carreau nanofluids under the effect of Cattaneo–Christov heat flux model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 July 2014

Xicheng Li

The mathematical model of a two-phase Lamé-Clapeyron-Stefan problem for a semi-infinite material with a density jump is considered. The purpose of this paper is to study the…

Abstract

Purpose

The mathematical model of a two-phase Lamé-Clapeyron-Stefan problem for a semi-infinite material with a density jump is considered. The purpose of this paper is to study the analytical solutions of the models and show the performance of several parameters.

Design/methodology/approach

To describe the heat conduction, the Caputo type time fractional heat conduction equation is used and a convective term is included since the changes in density give rise to motion of the liquid phase. The similarity variables are used to simplify the models.

Findings

The analytical solutions describing the changes of temperature in both liquid and solid phases are obtained. For the solid phase, the solution is given in the Wright function form. While for the liquid phase, since the appearance of the advection term, an approximate solution in series form is given. Based on the solutions, the performance of the parameters is discussed in detail.

Originality/value

From the point of view of mathematics, the moving boundary problems are nonlinear, so barely any analytical solutions for these problems can be obtained. Furthermore, there are many applications in which a material undergoes phase change, such as in melting, freezing, casting and cryosurgery.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 October 2022

Jayakrishnan Jayapal, Senthilkumaran Kumaraguru and Sudhir Varadarajan

This paper aims to propose a view similarity-based shape complexity metric to guide part selection for additive manufacturing (AM) and advance the goals of design for AM. The…

Abstract

Purpose

This paper aims to propose a view similarity-based shape complexity metric to guide part selection for additive manufacturing (AM) and advance the goals of design for AM. The metric helps to improve the selection process by objectively screening a large number of parts and identifying the parts most suited for AM and enabling experts to prioritize parts from a smaller set based on relevant subjective/contextual factors.

Design/methodology/approach

The methodology involves calculating a part’s shape complexity based on the concept of view similarity, that is, the similarity of different views of the outer shape and internal cross-sectional geometry. The combined shape complexity metric (weighted sum of the external shape and internal structure complexity) has been used to rank various three dimensional (3D) models. The metric has been tested for its sensitivity to various input parameters and thresholds are suggested for effective results. The proposed metric’s applicability for part selection has also been investigated and compared with the existing metric-based part selection.

Findings

The proposed shape complexity metric can distinguish the parts of different shapes, sizes and parts with minor design variations. The method is also efficient regarding the amount of data and computation required to facilitate the part selection. The proposed method can detect differences in the mass properties of a 3D model without evaluating the modified parameters. The proposed metric is effective in initial screening of a large number of parts in new product development and for redesign using AM.

Research limitations/implications

The proposed metric is sensitive to input parameters, such as the number of viewpoints, design orientation, image resolution and different lattice structures. To address this issue, this study suggests thresholds for each input parameter for optimum results.

Originality/value

This paper evaluates shape complexity using view similarity to rank parts for prototyping or redesigning with AM.

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 32000