Search results

1 – 10 of 170
Article
Publication date: 26 June 2020

Haojia Su, Zhengchun Cai, Zhengwei lv, Yongkang Chen and Yongxin Ji

In this work, the authors used reversible addition-fragmentation transfer (RAFT) polymerization to develop a new cationic acrylate modified epoxy resin emulsion for water-borne…

Abstract

Purpose

In this work, the authors used reversible addition-fragmentation transfer (RAFT) polymerization to develop a new cationic acrylate modified epoxy resin emulsion for water-borne inkjet which have the advantages of both polyacrylate and epoxy resin. The emulsion was successfully used in the canvas coating for inkjet printing. This paper aims to contribute to the development of novel cationic emulsions for inkjet printing industry.

Design/methodology/approach

In this work, the epoxy acrylate was synthesized from RAFT agent and epoxy resin firstly. Cationic macromolecular emulsifier was prepared by RAFT polymerization, using 2,2’-Azobisisobutyronitrile as initiator, 2-(dimethylamino)ethyl methacrylate and styrene as monomer, which was directly used to prepare the emulsion. The influences of the amount of 2-(dimethylamino)ethyl methacrylate on particle size, zeta potential and water contact angle were studied. Finally, the cationic emulsion was used to print images by inkjet printing.

Findings

The emulsion has the smallest particle size, the highest potential and the highest water contact angle when the DM content is 13 Wt.%. The transmission electron microscopy analysis reveals the latex particles is core-shell sphere with the diameters in the range 120–200 nm. The emulsion was successfully used in the canvas coating for inkjet printing. This work will contribute to the development of novel cationic emulsions for inkjet printing industry.

Originality/value

The emulsion was successfully used in the canvas coating for inkjet printing. This work will contribute to the development of novel cationic emulsions for inkjet printing industry.

Details

Pigment & Resin Technology, vol. 49 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 July 2020

Zhang Fengjun, Kong Cui and Chen Qianbao

The purpose of this paper is to explore the factors that affect the compactness of the mud filter cake, so as to prepare diaphragm wall slurry with good uniformity, small…

Abstract

Purpose

The purpose of this paper is to explore the factors that affect the compactness of the mud filter cake, so as to prepare diaphragm wall slurry with good uniformity, small filtration loss and excellent recycling performance.

Design/methodology/approach

In this paper, the thickness, filtration loss and slurry viscosity of the filter cake are used as the characterization methods. The effects of pore depth, slurry specific gravity, intercalated metal ions, bridging polymer and water-soluble polymer on the compactness of the filter cake were studied.

Findings

The experimental results showed that the slurry's own pressure (pore depth) and specific gravity have little influence on the compactness of the filter cake and K+ can be considered as an auxiliary filtration loss reduction factor. Both the sulfonate copolymer and the potassium polyacrylate particle can significantly reduce the filtration loss of the slurry, which can effectively improve the filter cake compactness. Moreover, the composite application of potassium polyacrylate particles in the sizes of 80–100 and 150–200 meshes can exhibit a better filter cake compaction effect.

Originality/value

It solves the problems of high pulping cost, serious pollution of the environment, poor quality of filter cake formation and large filtration loss during the construction of the diaphragm wall, which improved the construction quality of the diaphragm wall.

Details

Pigment & Resin Technology, vol. 50 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 May 2019

Chang-E Zhou, Haidan Niu, Qing Zhang, Huixia Li, Chi Wai Kan, Chang Sun, Jinmei Du and Changhai Xu

This paper aims to prepare an associative thickener base on two polyacrylate-based copolymers, which can be used for digital printing of nylon carpet with enhanced performance.

Abstract

Purpose

This paper aims to prepare an associative thickener base on two polyacrylate-based copolymers, which can be used for digital printing of nylon carpet with enhanced performance.

Design/methodology/approach

An associative thickener was prepared by compounding two polyacrylate-based copolymers, cationic starch and polyacrylic acid; and mediated by polyethylene glycol and polyacrylamide crosslinker. The formulation of the associative thickener was optimized by using the orthogonal array testing strategy. The stability of the associative thickener was investigated by measuring effects of temperature, electrolytes, storage time and auxiliaries on viscosity. The associative thickener was compared with a commercial thickener by evaluating their performance in digital printing of nylon carpet.

Findings

The associative thickener provided same color strength and fastness in the printing of nylon carpet as the commercial one, but was more easily washed off for a better hand feeling of the printed carpet.

Practical implications

The prepared associative thickener can be applied for digital printing of nylon carpet.

Originality/value

The associative thickener can be facilely prepared from commercially available chemicals and suitable for digital printing of nylon carpet.

Details

Pigment & Resin Technology, vol. 48 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 January 2010

Zonggen Qin and Weiping Tu

The purpose of this paper is to modify the surface property of polyacrylate latex films using only small amounts of fluorinated acrylate and to optimise the results of such a…

1107

Abstract

Purpose

The purpose of this paper is to modify the surface property of polyacrylate latex films using only small amounts of fluorinated acrylate and to optimise the results of such a modification.

Design/methodology/approach

The core‐shell particles with polyacrylate rich in core and containing fluorinated polymer rich in shell are prepared by a two‐stage semi‐continuous emulsion polymerisation under kinetically controlled conditions. The surface properties of the latex films produced from the core‐shell particles are investigated by optical goniometer measurement as well as contact angle method.

Findings

The latex films produced from the core‐shell particles exhibited surface energy of around 10 mN/m. The angle resolved X‐ray photoelectron spectrum measurements showed an increased average fluorine concentration in a surface layer thickness of a few nanometres, when compared to the fluorine concentration in the bulk.

Research limitations/implications

Methyl methacrylate, butyl acrylate and N‐methylol acrylamide monomers are used as co‐monomer to form the shell with fluoroalkyl methacrylate. By preparing core‐shell emulsion with a fluoropolymer in the shell phase, the surface property of polyacrylate latex films is efficiently modified by using only small amounts of fluorinated acrylate monomer.

Practical implications

The method developed provided a simple and practical solution to improving the surface property of polyacrylate latex films.

Originality/value

The method for enhancing surface property of polyacrylate latex films is novel and can find numerous applications in surface coating.

Details

Pigment & Resin Technology, vol. 39 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 16 June 2021

Zrinka Buhin Šturlić, Mirela Leskovac, Krunoslav Žižek and Sanja Lučić Blagojević

The purpose of this paper is to prepare stabile emulsions with 0–15% of colloidal silica and high monomer/water ratio and to investigate the influence of silica addition and…

1187

Abstract

Purpose

The purpose of this paper is to prepare stabile emulsions with 0–15% of colloidal silica and high monomer/water ratio and to investigate the influence of silica addition and surface modification on the polyacrylate properties.

Design/methodology/approach

Improving the properties of the composite can be achieved by optimizing the compatibility between the phases of the composite system with improving the interactions at the matrix/filler interface. Therefore, the silica surface was modified with nonionic emulsifier octylphenol ethoxylate, cationic initiator 2,2'-azobis-(amidinopropane dihydrochloride) and 3-methacryloxypropyltrimethoxysilane and polyacrylate/silica nanocomposites were prepared via in situ emulsion polymerization. Particle size distribution, rheological properties of the emulsions and morphology, thermal properties and mechanical properties of the film prepared from the emulsions were investigated.

Findings

Polyacrylate/silica systems with unmodified silica, silica modified with nonionic emulsifier and cationic initiator have micrometer, while pure PA matrix and systems with silica modified with silane have nanometer particle sizes. Addition and surface modification of the filler increased emulsion viscosity. Agglomeration of silica particles in composites was reduced with silica surface modification. Silica filler improves thermal stability and tensile strength of polyacrylate.

Originality/value

This paper provides broad spectrum of information depending on filler surface modification and latex preparation via in situ emulsion polymerization and properties with high amount of filler and monomer/water ratio with the aim that prepared latex is suitable for film formation and final application.

Details

Pigment & Resin Technology, vol. 51 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Abstract

Purpose

The purpose of this paper is to provide an overview of the research in a project aimed at developing manufacturing techniques for integrated optical and electronic interconnect printed circuit boards (OPCB) including the motivation for this research, the progress, the achievements and the interactions between the partners.

Design/methodology/approach

Several polymer waveguide fabrication methods were developed including direct laser write, laser ablation and inkjet printing. Polymer formulations were developed to suit the fabrication methods. Computer‐aided design (CAD) tools were developed and waveguide layout design rules were established. The CAD tools were used to lay out a complex backplane interconnect pattern to meet practical demanding specifications for use in a system demonstrator.

Findings

Novel polymer formulations for polyacrylate enable faster writing times for laser direct write fabrication. Control of the fabrication parameters enables inkjet printing of polysiloxane waveguides. Several different laser systems can be used to form waveguide structures by ablation. Establishment of waveguide layout design rules from experimental measurements and modelling enables successful first time layout of complex interconnection patterns.

Research limitations/implications

The complexity and length of the waveguides in a complex backplane interconnect, beyond that achieved in this paper, is limited by the bend loss and by the propagation loss partially caused by waveguide sidewall roughness, so further research in these areas would be beneficial to give a wider range of applicability.

Originality/value

The paper gives an overview of advances in polymer formulation, fabrication methods and CAD tools, for manufacturing of complex hybrid‐integrated OPCBs.

Details

Circuit World, vol. 36 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 6 November 2017

Wei Ding, Kaimei Peng, Tao Zou, Ruonan Wang, Jinshan Guo, Wei Ping Tu, Chao Liu and Jianqing Hu

The purpose of this paper is to develop non-leaching and eco-friendly antimicrobial waterborne polyacrylates with excellent antibacterial properties by grafting antibacterial…

Abstract

Purpose

The purpose of this paper is to develop non-leaching and eco-friendly antimicrobial waterborne polyacrylates with excellent antibacterial properties by grafting antibacterial vinyl monomer, glycidyl methacrylate (GMA) modified polyhexamethylene guanidine hydrochloride (PHMG).

Design/methodology/approach

PHMG of different molecular weights were modified by GMA to synthesize antibacterial vinyl monomer, GMA-modified PHMG (GPHMG). Different content and molecular weights of GPHMG were used to synthesize antimicrobial waterborne polyacrylates through emulsion polymerization.

Findings

The addition of GPHMG gained by modifying PHMG showed little influence on thermal stability of the films, but decreased the glass transition temperature(Tg). Meanwhile, the tensile strength decreased, while the breaking elongation increased. The antibacterial properties of the antibacterial films with different GPHMG contents were studied, when GPHMG content was around 0.9 Wt.%, antibacterial films showed excellent antibacterial activity (antibacterial rate >= 99.99 per cent). When weight content of GPHMG in the films remained constant, antibacterial property of films increased first and then decreased with the increase of molecular weight of GPHMG. The structural antibacterial polymer film had more perdurable antibacterial activity than the blended one.

Research limitations/implications

The grafting efficiency of GPHMG to antimicrobial waterborne polyacrylates could be further improved.

Practical implications

Antimicrobial waterborne polyacrylates with excellent antibacterial properties can be used to antibacterial coating and adhesive.

Originality/value

The antibacterial properties of films with different molecular weight of GPHMG were studied, and the durability and stability of antibacterial properties between structural antimicrobial films and blended antimicrobial films were also investigated by ring-diffusion method.

Details

Pigment & Resin Technology, vol. 46 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 August 2012

S. Dhouib, K. Abid and F. Sakli

In this paper, nanocomposites are synthesised with Tunisian natural clay which has the advantage of being inexpensive. In fact, it is simply a mixture of several sorts of clays…

Abstract

In this paper, nanocomposites are synthesised with Tunisian natural clay which has the advantage of being inexpensive. In fact, it is simply a mixture of several sorts of clays (kaolinite, dolomite, calcite, illite, and quartz). This clay has been cleaned, purified, dried, and steered with polyacrylate resin which is actually used in the textile field for several types of other applications, such as comfort, elasticity or impermeability. The samples have been examined by x-ray diffraction (XRD) and scanning electron microscopy (SEM) in order to observe their compositions and ensure the formation of the nanocomposites .The mixture resin/clay is deposited onto 100% cotton fabric and tested by using a PASOD device that measures the necessary voltage to maintain the temperature difference between the inside and the outside of the fabric which is equal to 20°C. The enhancement of the fabric thermal insulation is noticed by calculating the difference in temperature between the inside and the outside of the fabric. The coating which is a nanocomposite PAC/clay has been modelled which proves that it is a Hamiltonian model as the clay percentages are superior to 4% when the clay dispersion and the free-volume are calculated.

Details

Research Journal of Textile and Apparel, vol. 16 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 15 December 2023

Xia Sun, Jianben Xu, Caili Yu and Faai Zhang

The purpose of this paper is to synthesize a polyacrylate-based dispersant with a determined target molecular weight for oily systems and to determine the optimal dispersant level…

Abstract

Purpose

The purpose of this paper is to synthesize a polyacrylate-based dispersant with a determined target molecular weight for oily systems and to determine the optimal dispersant level and monomer ratio of the dispersant.

Design/methodology/approach

The dispersant was synthesized by conventional radical polymerization using methacrylic acid, butyl acrylate and dimethylamino ethyl methacrylate as the monomer. It was characterized by Fourier transform infrared spectroscopy, nuclear magnetic hydrogen spectroscopy, gel permeation chromatography and thermogravimetric analysis. The dispersant was used to disperse TiO2, and the performance of the dispersant was evaluated by measuring the viscosity, particle size and dispersive force of the slurry.

Findings

The dispersant exhibited high thermal stability and was successfully anchored to the surface of the TiO2 pigment. When used to disperse a TiO2 slurry, it effectively made the TiO2 slurry more fluid, indicating its strong viscosity-reducing properties. The viscosity, particle sizes and dispersion capabilities of the TiO2 slurry were found to vary depending on the contents and monomer ratios of the dispersant.

Research limitations/implications

P(MAA-BA-DM) dispersant increases the wettability of TiO2 only in oily solvents but not in aqueous solvents.

Practical implications

P(MAA-BA-DM) dispersant makes it easier to disperse TiO2 pigments in oily solvents, increasing the amount of pigment in the solvent and making the preparation of highly pigmented pastes easier.

Originality/value

A dispersant containing suitable carboxyl and tertiary amine groups was initially synthesized to disperse TiO2 in an oily system. The findings are anticipated to be used in the formulation of pigment concentrates, industrial coatings and other solvent-based coatings.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 June 2020

Yilu Gong, Tantan Shao and Lijun Chen

Fluorine materials have received the keen attention of many researchers because of their water repellency and low surface free energy. The purpose of this paper is to prepare…

Abstract

Purpose

Fluorine materials have received the keen attention of many researchers because of their water repellency and low surface free energy. The purpose of this paper is to prepare fluorine-containing soap-free acrylic emulsion, which sodium allyoxypropyl hydroxypropyl sulfonate (COPS-1) and anionic emulsifier sodium a-alkenyl sulfonate (a-AOS) were combined as polymerizable emulsifier, and undecylenic acid (UA) and dodecafluoroheptyl methacrylate(DFMA) were introduced as functional monomer.

Design/methodology/approach

The fluorinated polyacrylate emulsion was successfully prepared by semi-continuous seed emulsion polymerization, wherein the main monomers were methyl methacrylate (MMA) and butyl methacrylate (BA), and the initiator was potassium persulfate (KPS). Sodium alloxypropyl sulfonate (COPS-1) and an anionic emulsifier sodium a-alkenyl sulfonate (a-AOS) were compounded as a polymerizable emulsifier. Besides, undecylenic acid (UA) and dodecafluoroheptyl methacrylate (DFMA) were introduced as the functional monomers.

Findings

The optimum recipe of preparing the modified latex is as follows: the amount of emulsifier was 4%, the ratio of emulsifier (COPS-1: AOS) was 3: 1, and the content of initiator was 0.6%. In this case, the conversion rate of acrylic polymer emulsion was high and the polymerization stability was good. When the amount of monomer UA was 2% and the amount of DFMA was 4%, the overall performance of the emulsion was the best.

Originality/value

The fluorine-containing soap-free acrylic emulsion is prepared via semi-continuous seeded emulsion polymerisation, which sodium allyoxypropyl hydroxypropyl sulfonate (COPS-1) and anionic emulsifier sodium a-alkenyl sulfonate (a-AOS) were combined as polymerizable emulsifier, and undecylenic acid (UA) and dodecafluoroheptyl methacrylate (DFMA) were introduced as functional monomer. There are two main innovations. One is that the fluorine-containing soap-free acrylic emulsion is prepared successfully. The other is that the undecylenic acid is introduced as functional monomer.

Details

Pigment & Resin Technology, vol. 50 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 170