Search results

1 – 10 of over 1000
Article
Publication date: 4 August 2022

Rusya Iryanti Yahaya, Norihan Md Arifin, Ioan Pop, Fadzilah Md Ali and Siti Suzilliana Putri Mohamed Isa

This paper aims to study the stagnation point flow of Al2O3–Cu/H2O hybrid nanofluid over a radially shrinking disk with the imposition of the magnetic field, viscous-Ohmic…

34

Abstract

Purpose

This paper aims to study the stagnation point flow of Al2O3–Cu/H2O hybrid nanofluid over a radially shrinking disk with the imposition of the magnetic field, viscous-Ohmic dissipation and convective boundary condition.

Design/methodology/approach

Similarity variables are introduced and used in reducing the governing partial differential equations into a system of ordinary differential equations. A built-in bvp4c solver in MATLAB is then used in the computation of the numerical solutions for equations (7) and (8) subject to the boundary conditions (9). Then, the behavior of the flow and thermal fields of the hybrid nanofluid, with various values of controlling parameters, are analyzed.

Findings

The steady flow problem resulted in multiple (dual) solutions. A stability analysis performed to identify the stable solution applicable in practice revealed that the first solution is stable while the second solution is unstable. The skin friction coefficient and Nusselt number of the hybrid nanofluid are found to be greater than the Al2O3–H2O nanofluid. Thus, the hybrid nanofluid has a better heat transfer performance than the nanofluid. Besides that, the presence of the magnetic field, suction, convective boundary condition and the enhancement of nanoparticle volume fraction of Cu augments the skin friction coefficient and Nusselt number of the hybrid nanofluid. Meanwhile, the presence of viscous-Ohmic dissipation reduces the heat transfer performance of the fluid.

Originality/value

To the best of the authors’ knowledge, the present results are original and new for the study of the flow and heat transfer of Al2O3–Cu/H2O hybrid nanofluid past a permeable radially shrinking disk. Considerable efforts have been directed toward the study of the boundary layer flow and heat transfer over stretching/shrinking surfaces and disks because of its numerous industrial applications, such as electronic, power, manufacturing, aerospace and transportation industries. Common heat transfer fluids such as water, alumina, cuprum and engine oil have limited heat transfer capabilities due to their low heat transfer properties. In contrast, metals have higher thermal conductivities than these fluids. Therefore, it is desirable to combine the two substances to produce a heat transfer medium that behaves like a fluid but has higher heat transfer properties.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 August 2022

N. Keerthi Reddy and M. Sankar

This study aims to numerically study the buoyant convective flow of two different nanofluids in a porous annular domain. A uniformly heated inner cylinder, cooled outer…

Abstract

Purpose

This study aims to numerically study the buoyant convective flow of two different nanofluids in a porous annular domain. A uniformly heated inner cylinder, cooled outer cylindrical boundary and adiabatic horizontal surfaces are considered because of many industrial applications of this geometry. The analysis also addresses the comparative study of different porous media models governing fluid flow and heat transport.

Design/methodology/approach

The finite difference method has been used in the current simulation work to obtain the numerical solution of coupled partial differential equations. In particular, the alternating direction implicit method is used for solving transient equations, and the successive line over relaxation iterative method is used to solve time-independent equation by choosing an optimum value for relaxation parameter. Simpson’s rule is adopted to estimate average Nusselt number involving numerical integration. Various grid sensitivity checks have been performed to assess the sufficiency of grid size to obtain accurate results. In this analysis, a general porous media model has been considered, and a comparative study between three different models has been investigated.

Findings

Numerical simulations are performed for different combinations of the control parameters and interesting results are obtained. It has been found that the an increase in Darcy and Rayleigh numbers enhances the thermal transport rate and strengthens the nanofluid movement in porous annulus. Also, higher flow circulation rate and thermal transport has been detected for Darcy model as compared to non-Darcy models. Thermal mixing could be enhanced by considering a non-Darcy model.

Research limitations/implications

The present results could be effectively used in many practical applications under the limiting conditions of two-dimensionality and axi-symmetry conditions. The only drawback of the current study is it does not include the three-dimensional effects.

Practical implications

The results could be used as a first-hand information for the design of any thermal systems. This will help the design engineer to have fewer trial-and-run cases for the new design.

Originality/value

A pioneering numerical investigation on the buoyant convective flow of two different nanofluids in an annular porous domain has been carried out by using a general Darcy–Brinkman–Forchheimer model to govern fluid flow in porous matrix. The results obtained from current investigation are novel and original, with numerous practical applications of nanofluid saturated porous annular enclosure in the modern industry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 May 2022

Rashmi Agrawal and Pradeep Kaswan

This paper aims to examine the squeezing flow of hybrid nanofluid within the two parallel disks. The 50:50% water–ethylene glycol mixture is used as a base fluid to…

Abstract

Purpose

This paper aims to examine the squeezing flow of hybrid nanofluid within the two parallel disks. The 50:50% water–ethylene glycol mixture is used as a base fluid to prepare Ag–Fe_3O_4 hybrid nanofluid. Entropy generation analysis is examined by using the second law of thermodynamics, and Darcy’s modal involves estimating the behavior of a porous medium. The influences of Viscous dissipation, Joule heating and thermal radiation in modeling are further exerted into concern.

Design/methodology/approach

For converting partial differential systems to ordinary systems, a transformation technique is used. For the validation part, the numerical solution is computed by embracing a fourth-order exactness program (bvp4c) and compared with the analytical solution added by the homotopy analysis method (HAM). Graphical decisions expose the values of miscellaneous-arising parameters on the velocity, temperature and local-Nusselt numbers.

Findings

Hybrid nanofluid gives significant enhancement in the rate of heat transfer compared with nanofluid. The outcomes indicate that the average Nusselt number and entropy generation are increasing functions of the magnetic field, porosity and Brinkman number. When the thermal radiation rises, the average Nusselt number diminishes and the entropy generation advances. Furthermore, combining silver and magnetite nanoparticles into the water–ethylene glycol base fluid significantly enhances entropy generation performance.

Originality/value

Entropy generation analysis of the magneto-hydrodynamics (MHD) fluid squeezed between two parallel disks by considering Joule heating, viscous dissipation and thermal radiation for different nanoparticles is addressed. Furthermore, an appropriate agreement is obtained in comparing the numerical results with previously published and analytical results.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 March 2022

Palash Soni, Fanindra Kumar Verma, Ranjeet Ranjan and Vivek Kumar Gaba

A computational fluid dynamics based parametric analysis for shell and helical tube heat exchanger (SHTHE) using CuO/water and Al2O3/water nanofluids is the main purpose…

Abstract

Purpose

A computational fluid dynamics based parametric analysis for shell and helical tube heat exchanger (SHTHE) using CuO/water and Al2O3/water nanofluids is the main purpose of the present work. The parameters having impact on the performance of a heat exchanger have been studied in depth. As the solid nanoparticle shows higher thermal conductivity compared to liquid particles, inclusion of this nanoparticle into the base fluid significantly enhances the thermal conductivity of the liquid. Incorporation of nanofluid in the heat exchanger can increase its performance.

Design/methodology/approach

The simulation is performed in Solid-Works flow simulation, and the performance of SHTHE is observed by varying the pitch of helical tube from 0.013 to 0.018 m and coil diameter from 0.0813 to 0.116 m, keeping the other parameters constant. The tube side and shell side flow rate is kept as 2 LPM.

Findings

The results indicate that the effectiveness of the heat exchanger increases with the increase of pitch and coil diameter. The maximum effectiveness of 0.5022 for CuO/water and 0.4928 for Al2O3/water nanofluid is observed at a pitch of 0.018 m and the coil diameter of 0.116 m.

Originality/value

It is observed that CuO/water nanofluid shows better performance compared with Al2O3/water nanofluid. For a coil diameter of 0.116 m and pitch of 0.018 m, the SHTHE with CuO/water nanofluid shows 1.82% greater effectiveness compared to the effectiveness with Al2O3/water nanofluid.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 December 2021

Shiva Singh and Subrata Kumar Ghosh

The study aims to use nanofluids as coolants for improving heat transfer peculiarities of plate heat exchangers (PHE). The experimental and numerical investigations are…

Abstract

Purpose

The study aims to use nanofluids as coolants for improving heat transfer peculiarities of plate heat exchangers (PHE). The experimental and numerical investigations are thoroughly performed using distilled water-based Al2O3, graphene nanoplatelet (GnP) and multi-walled carbon nanotubes (MWCNT) nanofluids.

Design/methodology/approach

The numerical simulation based on Single Phase Model (SPM) was performed on a realistic 3 D model of PHE having similar dimensions as of the actual plate. The standard k-epsilon turbulent model was used to solve the problem. The concentration and flow rate of nanofluids were ranging from 0.1 to 1 Vol.% and 1 to 5 lpm, respectively, at 30°C. Whereas, hot side fluid is distilled water at 2 lpm and 80°C. The heat transfer characteristics such as bulk cold outlet temperature, heat transfer rate (HTR), heat transfer coefficient (HTC), Nusselt number (Nu), pressure drop, pumping power, effectiveness and exergy loss were experimentally evaluated using nanofluids in a PHE.

Findings

The experimental results were then compared with the numerical model. The experimental results revealed maximum enhancement in an average heat transfer rate of 9.86, 14.86 and 17.27% using Al2O3, GnP and MWCNT nanofluids, respectively, at 1 Vol.%. The present computational fluid dynamics model accurately predicts HTR, and the results deviate <1.1% with experiments for all the cases. The temperature and flow distribution show promising results using nanofluids.

Originality/value

The study helps to visualise heat transfer and flow distribution in PHE using different nanofluids under different operating conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 March 2022

Subhasree Dutta, Somnath Bhattacharyya and Ioan Pop

The purpose of this study is to analyze the nonhomogeneous model on the mixed convection of Al2O3–Fe3O4 Bingham plastic hybrid nanofluid in a ventilated enclosure subject…

Abstract

Purpose

The purpose of this study is to analyze the nonhomogeneous model on the mixed convection of Al2O3–Fe3O4 Bingham plastic hybrid nanofluid in a ventilated enclosure subject to an externally imposed uniform magnetic field. Entropy generation and the pressure drop are determined to analyze the performance of the heat transfer. The significance of Joule heating arising due to the applied magnetic field on the heat transfer of the yield stress fluid is described.

Design/methodology/approach

The ventilation in the enclosure of heated walls is created by an opening on one vertical wall through which cold fluid is injected and another opening on the opposite vertical wall through which fluid can flow out.

Findings

This study finds that the inclusion of Fe3O4 nanoparticles with the Al2O3-viscoplastic nanofluid augments the heat transfer. This rate of enhancement in heat transfer is higher than the rate by which the entropy generation is increased as well as the enhancement in the pressure drop. The yield stress has an adverse effect on the heat transfer; however, it favors thermal mixing. The magnetic field, which is acting opposite to the direction of the inlet jet, manifests heat transfer of the viscoplastic hybrid nanofluid. The horizontal jet of cold fluid produces the optimal heat transfer.

Originality/value

The objective of this study is to analyze the impact of the inclined cold jet of viscoplastic electrically conducting hybrid nanofluid on heat transfer from the enclosure in the presence of a uniform magnetic field. The combined effect of hybrid nanoparticles and a magnetic field to enhance heat transfer of a viscoplastic fluid in a ventilated enclosure has not been addressed before.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 June 2021

LiJun Zhang, Tayyaba Nazar, M.M. Bhatti and Efstathios E. Michaelides

The flow and heat transfer of a hybrid nanofluid composed of kerosene and ZnO-Al2O3 nanoparticles (NPs) is investigated. The flow occurs over complex surfaces with…

Abstract

Purpose

The flow and heat transfer of a hybrid nanofluid composed of kerosene and ZnO-Al2O3 nanoparticles (NPs) is investigated. The flow occurs over complex surfaces with stretching and shrinking features. The base fluid is electrically conducting, and an external magnetic field is added so that the nanofluid and the electric field are in equilibrium. Irrotational flow with viscous dissipation effects is considered.

Design/methodology/approach

The governing equations of the system are formulated, and a similarity transformation is used to convert the system of equations into ordinary differential equations, which are solved numerically. The friction coefficient of the flow and the Nusselt number are calculated for a wide range of parameters, and the results are presented in graphical form. In addition, dual solutions of the problem were noticed to occur for a certain range of the unsteadiness parameter. A stability analysis has been performed and presented to elucidate the behavior of these dual solutions.

Findings

For the solution of the upper branch, the velocity and temperature profiles of the nanofluid are enhanced by increasing the magnetic field parameter M, but the same variables decrease in the solution of the lower branch. The same trend is detected for the velocity of the fluid with the suction parameter. The temperature of the nanofluid decreases in both branches of the solution by increasing the Prandtl number. Similarly, they decrease with the suction parameter. The temperature of the nanofluid slightly increases in both branches of the solution by increasing the Eckert number. With the stability analysis the authors performed, it was determined that the solution is stable in the upper branch, but unstable in the lower branch.

Originality/value

The kerosene nanofluid with hybrid Zinc/Aluminum-oxide is presented for the first time in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 February 2021

Subhasree Dutta, Somnath Bhattacharyya and Ioan Pop

The purpose of this study is to analyze the heat transfer and flow enhancement of an Al2O3-water nanofluid filling an inclined channel whose lower wall is embedded with…

Abstract

Purpose

The purpose of this study is to analyze the heat transfer and flow enhancement of an Al2O3-water nanofluid filling an inclined channel whose lower wall is embedded with periodically placed discrete hydrophobic heat sources. Formation of a thin depletion layer of low viscosity over each hydrophobic heated patch leads to the velocity slip and temperature jump condition at the interface of the hydrophobic patch.

Design/methodology/approach

The mixed convection of the nanofluid is analysed based on the two-phase non-homogeneous model. The governing equations are solved numerically through a control volume approach. A periodic boundary condition is adopted along the longitudinal direction of the modulated channel. A velocity slip and temperature jump condition are imposed along with the hydrophobic heated stripes. The paper has validated the present non-homogeneous model with existing experimental and numerical results for particular cases. The impact of temperature jump condition and slip velocity on the flow and thermal field of the nanofluid in mixed convection is analysed for a wide range of governing parameters, namely, Reynolds number (50 ≤ Re ≤ 150), Grashof number ( 103Gr5×104), nanoparticle bulk volume fraction ( 0.01φb0.05), nanoparticle diameter ( 30dp60) and the angle of inclination ( 60°σ60°).

Findings

The presence of the thin depletion layer above the heated stripes reduces the heat transfer and augments the volume flow rate. Consideration of the nanofluid as a coolant enhances the rate of heat transfer, as well as the entropy generation and friction factor compared to the clear fluid. However, the rate of increment in heat transfer suppresses by a significant margin of the loss due to enhanced entropy generation and friction factor. Heat transfer performance of the channel diminishes as the channel inclination angle with the horizontal is increased. The paper has also compared the non-homogeneous model with the corresponding homogeneous model. In the non-homogeneous formulation, the nanoparticle distribution is directly affected by the slip conditions by virtue of the no-normal flux of nanoparticles on the slip planes. For this, the slip stripes augment the impact of nanoparticle volume fraction compared to the no-slip case.

Originality/value

This paper finds that the periodically arranged hydrophobic heat sources on the lower wall of the channel create a significant augmentation in the volume flow rate, which may be crucial to augment the transport process in mini- or micro-channels. This type of configuration has not been addressed in the existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 July 2021

Priyanka Agrawal, Praveen Kumar Dadheech, R.N. Jat, Dumitru Baleanu and Sunil Dutt Purohit

The purpose of this paper is to study the comparative analysis between three hybrid nanofluids flow past a permeable stretching surface in a porous medium with thermal…

Abstract

Purpose

The purpose of this paper is to study the comparative analysis between three hybrid nanofluids flow past a permeable stretching surface in a porous medium with thermal radiation. Uniform magnetic field is applied together with heat source and sink. Three set of different hybrid nanofluids with water as a base fluid having suspension of Copper-Aluminum Oxide (CuAl2O3), Silver-Aluminum Oxide (AgAl2O3) and Copper-Silver (CuAg) nanoparticles are considered. The Marangoni boundary condition is applied.

Design/methodology/approach

The governing model of the flow is solved by Runga–Kutta fourth-order method with shooting technique, using appropriate similarity transformations. Temperature and velocity field are explained by the figures for many flow pertinent parameters.

Findings

Almost same behavior is observed for all the parameters presented in this analysis for the three set of hybrid nanofluids. For increased mass transfer wall parameter ( fw) and Prandtl Number (Pr), heat transfer rate cuts down for all three sets of hybrid nanofluids, and reverse effect is seen for radiation parameter (R), and heat source/sink parameter ( δ).

Practical implications

The thermal conductivity of hybrid nanofluids is much larger than the conventional fluids; thus, heat transfer efficiency can be improved with these fluids and its implications can be seen in the fields of biomedical, microelectronics, thin-film stretching, lubrication, refrigeration, etc.

Originality/value

The current analysis is to optimize heat transfer of three different radiative hybrid nanofluids ( CuAl2O3/H2O, AgAl2O3/H2O and CuAg/H2O) over stretching surface after applying heat source/sink with Marangoni convection. To the best of the authors’ knowledge, this work is new and never published before.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 March 2021

Z.B. Xing, Xingchao Han, Hanbing Ke, Q.G. Zhang, Zhiping Zhang, Huijin Xu and Fuqiang Wang

A combination of highly conductive porous media and nanofluids is an efficient way for improving thermal performance of relevant applications. For precisely predicting the…

Abstract

Purpose

A combination of highly conductive porous media and nanofluids is an efficient way for improving thermal performance of relevant applications. For precisely predicting the flow and thermal transport of nanofluids in porous media, the purpose of this paper is to explore the inter-phase coupling numerical methods.

Design/methodology/approach

Based on the lattice Boltzmann (LB) method, this study combines the convective flow, non-equilibrium thermal transport and phase interactions of nanofluids in porous matrix and proposes a new multi-phase LB model. The micro-scale momentum and heat interactions are especially analyzed for nanoparticles, base fluid and solid matrix. A set of three-phase LB equations for the flow/thermal coupling of base fluid, nanoparticles and solid matrix is established.

Findings

Distributions of nanoparticles, velocities for nanoparticles and the base fluid, temperatures for three phases and interaction forces are analyzed in detail. Influences of parameters on the nanofluid convection in the porous matrix are examined. Thermal resistance of nanofluid convective transport in porous structures are comprehensively discussed with the models of multi-phases. Results show that the Rayleigh number and the Darcy number have significant influences on the convective characteristics. The result with the three-phase model is mildly larger than that with the local thermal non-equilibrium model.

Originality/value

This paper first creates the multi-phase theoretical model for the complex coupling process of nanofluids in porous structures, which is useful for researchers and technicians in fields of thermal science and computational fluid dynamics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000