Search results

1 – 10 of 762
Article
Publication date: 15 September 2023

Mohammad Abbaszadeh, Mohammad Hossein Montazeri and Mojtaba Mirzaie

The purpose of the study is to propose a novel implementation of twisted tape in sinusoidal wavy-walled tubes to enhance the rate of heat transfer without compromising thermal…

Abstract

Purpose

The purpose of the study is to propose a novel implementation of twisted tape in sinusoidal wavy-walled tubes to enhance the rate of heat transfer without compromising thermal efficiency. The study numerically investigates the fluid flow characteristics and analyzes the effect of different geometrical configurations, including wall wave amplitude, tape twist angles and nanoparticle volume fractions, on heat transfer improvement and performance factor.

Design/methodology/approach

This problem is numerically investigated using computational fluid dynamics, and the method is the finite volume method. A two-phase mixture model is used for nanofluid modeling.

Findings

The study investigated the effect of wall waviness, twisted tape, and nanoparticles on forced convective heat transfer and friction factor behavior in laminar pipe flow in three different Reynolds number regimes. The results showed that implementing twisted tape in wavy tubes significantly increased the rate of heat transfer and the performance factor, with the best twist ratio between 90 and 180°. Adding nanoparticles also enhanced heat transfer and performance factor, but to a lesser extent than wavy wall-twisted tape combinations. The study suggests selecting a proper combination of wavy wall and twisted tape at each Reynolds number to achieve an optimum solution.

Originality/value

To the best of the authors’ knowledge, the implementation of the selected passive methods in sinusoidal wavy tubes has not been studied before, and no previous studies have taken into account such a mix of heat transfer improvement techniques.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 April 2016

Mazen M. Abu-Khader

The purpose of this paper is to update a previous review work (Abu-khader, 2006, Heat & Mass Transfer, Vol. 43 No. 2, pp. 123-134) and highlight the new research methods on the…

Abstract

Purpose

The purpose of this paper is to update a previous review work (Abu-khader, 2006, Heat & Mass Transfer, Vol. 43 No. 2, pp. 123-134) and highlight the new research methods on the use of twisted tapes and the application of different configurations of these tape inserts. Also, based on a vast collection of experimental data in open literature, generalized Nusselt number (Nu) and friction factor (f) correlations as the function of twist ratio were developed with maximum error around ± 15 per cent. The present paper examines several case studies which apply complex configurations of twisted inserts.

Design/methodology/approach

Using the developed correlations, an equivalent Nusselt number and friction factor of typical type twist insert were generated which achieved the same performance of each complex configuration.

Findings

The open literature contains large number of wired and complex configurations of twisted tape inserts. Their applicability to real industrial use is questionable.

Originality/value

This paper presents an up-to-date review on the use of twisted tape in research, highlights the different tape configurations and proposes general correlations for traditional twisted tape inserts.

Details

World Journal of Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 April 2024

Shiang-Wuu Perng, Horng Wen Wu and De-An Huang

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Abstract

Purpose

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Design/methodology/approach

The novel design of this study is accomplished by inserting several twisted tapes and drilling some circular perforations near the tape edge (C1, C3, C5: solid tapes; C2, C4, C6: perforated tapes). The turbulence flow appearances and thermal convective features are examined for various Reynolds numbers (8,000–14,000) using the renormalization group (RNG) κε turbulent model and Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm.

Findings

The simulated outcomes reveal that inserting more perforated-twisted tapes into the heated round tube promotes turbulent thermal convection effectively. A swirling flow caused by the twisted tapes to produce the secondary flow jets between two reverse-spin tapes can combine with the main flow passing through the perforations at the outer edge to enhance the vortex flow. The primary factors are the quantity of twisted tapes and with/without perforations, as the perforation ratio remains at 2.5 in this numerical work. Weighing friction along the tube, C6 (four reverse-spin perforated-twisted tapes) brings the uppermost thermal-hydraulic performance of 1.23 under Re = 8,000.

Research limitations/implications

The constant thermo-hydraulic attributes of liquid water and the steady Newtonian fluid are research limitations for this simulated work.

Practical implications

The simulated outcomes will avail the inner-pipe design of a heat exchanger inserted by multiple perforated twisted tapes to enhance superior heat transfer.

Originality/value

These twisted tapes form tiny circular perforations along the tape edge to introduce the fluid flow through these bores and combine with the secondary flow induced between two reverse-spin tapes. This scheme enhances the swirling flow, turbulence intensity and fluid mixing to advance thermal convection since larger perforations cannot produce large jet velocity or the position of perforations is too far from the tape edge to generate a separated flow. Consequently, this work contributes a valuable cooling mechanism toward thermal engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 February 2024

Md Atiqur Rahman

The research focused on analysing a unique type of heat exchanger that uses swirling air flow over heated tubes. This heat exchanger includes a round baffle plate with holes and…

Abstract

Purpose

The research focused on analysing a unique type of heat exchanger that uses swirling air flow over heated tubes. This heat exchanger includes a round baffle plate with holes and opposite-oriented trapezoidal air deflectors attached at different angles. The deflectors are spaced at various distances, and the tubes are arranged in a circular pattern while maintaining a constant heat flux.

Design/methodology/approach

This setup is housed inside a circular duct with airflow in the longitudinal direction. The study examined the impact of different inclination angles and pitch ratios on the performance of the heat exchanger within a specific range of Reynolds numbers.

Findings

The findings revealed that the angle of inclination significantly affected the flow velocity, with higher angles resulting in increased velocity. The heat transfer performance was best at lower inclination angles and pitch ratios. Flow resistance decreased with increasing angle of inclination and pitch ratio.

Originality/value

The average thermal enhancement factor decreased with higher inclination angles, with the maximum value observed as 0.94 at a pitch ratio of 1 at an angle of 30°.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 November 2015

Kailash Mohapatra and Dipti Prasad Mishra

– The purpose of this paper is to determine the heat transfer and fluid flow characteristics of an internally finned tube for different flow conditions.

Abstract

Purpose

The purpose of this paper is to determine the heat transfer and fluid flow characteristics of an internally finned tube for different flow conditions.

Design/methodology/approach

Numerical investigation have been performed by solving the conservation equations of mass, momentum, energy with two equation-based k-eps model to determine the wall temperature, outlet temperature and Nusselt number of an internally finned tube.

Findings

It has been found from the numerically investigation that there exists an optimum fin height and fin number for maximum heat transfer. It was also found that the heat transfer in T-shaped fin was highest compared to other shape. The saw type fins had a higher heat transfer rate compared to the plane rectangular fins having same surface area and the heat transfer rate was increasing with teeth number. Keeping the surface area constant, the shape of the duct was changed from cylindrical to other shape and it was found that the heat transfer was highest for frustum shape compared to other shape.

Practical implications

The present computations could be used to predict the heat transfer and fluid flow characteristics of an internal finned tube specifically used in chemical and power plants.

Originality/value

The original contribution of the paper was in the use of the two equation-based k-eps turbulent model to predict the maximum heat transfer through optimum design of fins and duct.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2022

Shiang-Wuu Perng, Horng Wen Wu, Nugroho Putra Kelana, Yi-Ling Guo and Chen-Jui Yang

The purpose of this paper, computational fluid dynamics (CFD) work, is to promote turbulent thermal convection in a heated circular tube using a passive scheme of a slotted twisted

Abstract

Purpose

The purpose of this paper, computational fluid dynamics (CFD) work, is to promote turbulent thermal convection in a heated circular tube using a passive scheme of a slotted twisted sheet.

Design/methodology/approach

The inventive design uses square-cut and conjugate triangular perforations to diversify the twisted tape for better thermal convection. The current novel passive scheme methodology is accomplished by carving the same square cuts and slitting various sizes of equilateral triangle perforations (side length varies between 8 and 16 mm). The re-normalisation group turbulence model and the semi-implicit method for pressure-linked equation method examine the turbulent thermal convection aspects of all simulations at different Reynolds numbers (6,000, 10,000 and 14,000).

Findings

The analyses of simulations exhibit that the placement of a twisted tape with triangle perforations and equidistant square cuts can effectually promote thermal convection in a circular tube. A larger-sized triangle perforation can increase the thermal convection enhancement and thermal performance factor, but an enlarged perforation may decrease the thermal convection enhancement and thermal performance factor. As a result, compared with the smooth circular tube, the circular tube with the slotted twisted sheet slit by a 10 mm equilateral triangle brings about the maximum improvement ratio of the mean Nusselt number of about 2.8 at Re = 6,000. Under weighing the friction through the circular tube, the tube with the slotted twisted sheet slit by a 10 mm equilateral triangle gains the best thermal performance factor of about 1.36 at Re = 6,000.

Research limitations/implications

The working fluid is water and its physical features are assumed to be constant. In addition, the fluid is considered a steady flow in this CFD work.

Practical implications

These CFD predictions will benefit the development of heat exchanger tubes equipped with a slotted twisted sheet to acquire preferable thermal convection enhancement.

Social implications

Higher thermal performance achieved by placing a slotted twisted tape in a heated tube will benefit society in lower energy consumption, machinery maintenance costs and impact on the environment.

Originality/value

This study combined triangle perforations and square cuts on the twisted sheet. This combination can induce the fluid flow across the sheet to disturb the swirling flow and then promote the fluid mixing to increase thermal convection. Therefore, this modified tape can be a profitable passive device for designing a heat exchanger.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 January 2023

Johannes Liebrich and Christian Kreischer

Superconductors offer several advantages compared with conventional conductors. However, it is not clear at this stage whether these types of conductors provide the same…

Abstract

Purpose

Superconductors offer several advantages compared with conventional conductors. However, it is not clear at this stage whether these types of conductors provide the same durability. For this reason, tape conductors under mechanical forces need to be studied in detail. The purpose of this paper is to investigate the relationship between critical temperature and axial mechanical stress of GdBaCuO tape conductors.

Design/methodology/approach

The paper investigates the influence of axial mechanical stresses on the critical temperature of superconductors. For these investigations, a multi-physical test rig was developed, which makes it possible to perform these types of investigations. With the presented measurement methodology, the influence of mechanical stresses on the tape conductor can be determined.

Findings

The investigations show a correlation between the critical temperature and the acting mechanical stresses. The analytically presented approach to describe the transition temperature is valid for the investigated samples. In addition, it is determined that the effects are not reversible, and therefore, permanent damage to the tape conductor is observed.

Originality/value

The presented investigations make it possible to create more accurate models of GdBaCuO tape conductors. This enables to extend the superconducting state space, which so far depends on three critical quantities, by the quantity of the axial stress.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 September 2021

Ali Akbar Abbasian Arani and Ali Memarzadeh

Present investigation conducts a study on the hydrothermal features of a double flow Parabolic Trough Solar Collector (PTSC) equipped with sinusoidal-wavy grooved absorber tube…

Abstract

Purpose

Present investigation conducts a study on the hydrothermal features of a double flow Parabolic Trough Solar Collector (PTSC) equipped with sinusoidal-wavy grooved absorber tube and twisted tape insert filled with nanofluid. This paper aims to present an effectual PTSC which is comprised by nanofluid numerically by means of finite volume method.

Design/methodology/approach

The beneficial results such as pressure drop inside the absorber tube, mean predicted friction factor, predicted average Nusselt number and hydrothermal Performance Evaluation Criteria (PEC) are evaluated and reported to present the influences of numerous factors on studied interest outcomes. Effects of different Reynolds numbers and environmental conditions are also determined in this investigation.

Findings

It is found that using the absorber roof (canopy) can enhance the heat transfer ratio of PTSCs significantly during all studied Reynolds numbers. Also, it is realized that the combination of inner grooved surface, outer corrugated surface and inserting turbulator can improve the thermal-hydraulic characteristics of PTSCs sharply.

Originality/value

Novel PTSC (N.PTSC) filling with two Heat Transfer Fluids (HTFs), inner and outer surface corrugated absorber tube, absorber roof and inserting twisted tape (N.PTSC.f) has the highest PEC values among all novel configurations along all investigated Reynolds numbers which is followed by configurations N.PTSC with two HTFs and inserting twisted tape (N.PTSC.e), N.PTSC with two HTFs and outer surface corrugated absorber tube (N.PTSC.b) and N.PTSC with two HTFs and inner surface corrugated absorber tube (N.PTSC.c), respectively. N.PTSC.f Nusselt number values can overcome the high values of friction factor, and therefore is introduced as the most efficient model in the current study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 April 2021

Ali Akbar Abbasian Arani and Hamed Uosofvand

This paper aims to present a numerical investigation on laboratory-scale segmental baffles shell-and-tube heat exchanger (STHX) having various tube bundles and baffle…

Abstract

Purpose

This paper aims to present a numerical investigation on laboratory-scale segmental baffles shell-and-tube heat exchanger (STHX) having various tube bundles and baffle configuration.

Design/methodology/approach

To discover the higher performance the thermohydraulic behavior of shell-side fluid flow with circular, elliptical and twisted oval tube bundles with segmental and inclined segmental baffled is compared. Shell side turbulent flow and heat transfer are simulated by a finite volume discretization approach using SolidWorks Flow Simulation. To achieve greater configuration performance of this device, the following two approaches is considered: using the inclined baffle with 200 angles of inclination and applying the different tube bundle.

Findings

Different parameters as heat transfer rate, pressure drop (Δp), heat transfer coefficient (h) and heat transfer coefficient to pressure drop ratio (h/Δp) are presented and discussed. Besides, for considering the effect of pressure penalty and heat transfer improvement instantaneously, the efficiency evaluation coefficient (EEC) in the fluid flow and heat transfer based on the power required to provide the real heat transfer augmentation are used.

Originality/value

Obtained results displayed that, at the equal mass flow rate, the twisted oval tubes with segmental baffle decrease the pressure drop 53.6% and 35.64% rather than that the circular and elliptical tubes bundle, respectively. By comparing the (h/Δp) ratio, it can result that the STHX with twisted oval tubes bundle (both segmental and inclined baffle) has better performance than other kinds of the tube bundles. Present results showed that the values of the EEC for all provided models are higher than 1, except for elliptical tube bundles with segmental baffles. The STHX with twisted oval tube bundles and segmental baffle gives the highest EEC value equal to 1.16 in the range of investigated mass flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 September 2018

Evangelos Bellos, Ilias Daniil and Christos Tzivanidis

The purpose of this paper is to investigate a cylindrical flow insert for a parabolic trough solar collector. Centrally placed and eccentric placed inserts are investigated in a…

Abstract

Purpose

The purpose of this paper is to investigate a cylindrical flow insert for a parabolic trough solar collector. Centrally placed and eccentric placed inserts are investigated in a systematic way to determine which configuration leads to the maximum thermal enhancement.

Design/methodology/approach

The analysis is performed in SolidWorks Flow Simulation with a validated computational fluid dynamics model. Moreover, the useful heat production and the pumping work demand increase are evaluated using the exergy and the overall efficiency criteria. The different scenarios are compared for inlet temperature of 600 K, flow rate of 100 L/min and Syltherm 800 as the working fluid. Moreover, the inlet temperature is examined from 450 to 650 K, and the diameter of the insert is investigated up to 50 mm.

Findings

According to the final results, the use of a cylindrical insert of 30 mm diameter is the most sustainable choice which leads to 0.56 per cent thermal efficiency enhancement. This insert was examined in various eccentric positions, and it is found that the optimum location is 10 mm over the initial position in the vertical direction. The thermal enhancement, in this case, is about 0.69 per cent. The pumping work demand was increased about three times with the insert of 30 mm, but the absolute values of this parameter are too low compared to the useful heat production. So, it is proved that the increase in the pumping work is not able to eliminate the useful heat production increase. Moreover, the thermal enhancement is found to be greater at higher temperature levels and can reach up to 1 per cent for an inlet temperature of r650 K.

Originality/value

The present work is a systematic investigation of the cylindrical flow insert in a parabolic trough collector. Different diameters of this insert, as well as different positions in two dimensions, are examined using a parametrization of angle-radius. To the authors’ knowledge, there is no other study in the literature that investigates the presented many cases systematically with the followed methodology on parabolic trough collectors. Moreover, the results of this work are evaluated with various criteria (thermal, exergy and overall efficiency), something which is not found in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 762