Search results

1 – 10 of over 7000
Article
Publication date: 4 September 2018

Evangelos Bellos, Ilias Daniil and Christos Tzivanidis

The purpose of this paper is to investigate a cylindrical flow insert for a parabolic trough solar collector. Centrally placed and eccentric placed inserts are investigated in a…

Abstract

Purpose

The purpose of this paper is to investigate a cylindrical flow insert for a parabolic trough solar collector. Centrally placed and eccentric placed inserts are investigated in a systematic way to determine which configuration leads to the maximum thermal enhancement.

Design/methodology/approach

The analysis is performed in SolidWorks Flow Simulation with a validated computational fluid dynamics model. Moreover, the useful heat production and the pumping work demand increase are evaluated using the exergy and the overall efficiency criteria. The different scenarios are compared for inlet temperature of 600 K, flow rate of 100 L/min and Syltherm 800 as the working fluid. Moreover, the inlet temperature is examined from 450 to 650 K, and the diameter of the insert is investigated up to 50 mm.

Findings

According to the final results, the use of a cylindrical insert of 30 mm diameter is the most sustainable choice which leads to 0.56 per cent thermal efficiency enhancement. This insert was examined in various eccentric positions, and it is found that the optimum location is 10 mm over the initial position in the vertical direction. The thermal enhancement, in this case, is about 0.69 per cent. The pumping work demand was increased about three times with the insert of 30 mm, but the absolute values of this parameter are too low compared to the useful heat production. So, it is proved that the increase in the pumping work is not able to eliminate the useful heat production increase. Moreover, the thermal enhancement is found to be greater at higher temperature levels and can reach up to 1 per cent for an inlet temperature of r650 K.

Originality/value

The present work is a systematic investigation of the cylindrical flow insert in a parabolic trough collector. Different diameters of this insert, as well as different positions in two dimensions, are examined using a parametrization of angle-radius. To the authors’ knowledge, there is no other study in the literature that investigates the presented many cases systematically with the followed methodology on parabolic trough collectors. Moreover, the results of this work are evaluated with various criteria (thermal, exergy and overall efficiency), something which is not found in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2022

Shiang-Wuu Perng, Horng Wen Wu, Nugroho Putra Kelana, Yi-Ling Guo and Chen-Jui Yang

The purpose of this paper, computational fluid dynamics (CFD) work, is to promote turbulent thermal convection in a heated circular tube using a passive scheme of a slotted…

Abstract

Purpose

The purpose of this paper, computational fluid dynamics (CFD) work, is to promote turbulent thermal convection in a heated circular tube using a passive scheme of a slotted twisted sheet.

Design/methodology/approach

The inventive design uses square-cut and conjugate triangular perforations to diversify the twisted tape for better thermal convection. The current novel passive scheme methodology is accomplished by carving the same square cuts and slitting various sizes of equilateral triangle perforations (side length varies between 8 and 16 mm). The re-normalisation group turbulence model and the semi-implicit method for pressure-linked equation method examine the turbulent thermal convection aspects of all simulations at different Reynolds numbers (6,000, 10,000 and 14,000).

Findings

The analyses of simulations exhibit that the placement of a twisted tape with triangle perforations and equidistant square cuts can effectually promote thermal convection in a circular tube. A larger-sized triangle perforation can increase the thermal convection enhancement and thermal performance factor, but an enlarged perforation may decrease the thermal convection enhancement and thermal performance factor. As a result, compared with the smooth circular tube, the circular tube with the slotted twisted sheet slit by a 10 mm equilateral triangle brings about the maximum improvement ratio of the mean Nusselt number of about 2.8 at Re = 6,000. Under weighing the friction through the circular tube, the tube with the slotted twisted sheet slit by a 10 mm equilateral triangle gains the best thermal performance factor of about 1.36 at Re = 6,000.

Research limitations/implications

The working fluid is water and its physical features are assumed to be constant. In addition, the fluid is considered a steady flow in this CFD work.

Practical implications

These CFD predictions will benefit the development of heat exchanger tubes equipped with a slotted twisted sheet to acquire preferable thermal convection enhancement.

Social implications

Higher thermal performance achieved by placing a slotted twisted tape in a heated tube will benefit society in lower energy consumption, machinery maintenance costs and impact on the environment.

Originality/value

This study combined triangle perforations and square cuts on the twisted sheet. This combination can induce the fluid flow across the sheet to disturb the swirling flow and then promote the fluid mixing to increase thermal convection. Therefore, this modified tape can be a profitable passive device for designing a heat exchanger.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 March 2016

Martin Leary, Richard Piola, Jeff Shimeta, Steven Toppi, Scott Mayson, Matthew McMillan and Milan Brandt

Biofouling of marine vessels results in significant operational costs, as well as the bio-security risk associated with the transport of marine pests. Biofouling is particularly…

Abstract

Purpose

Biofouling of marine vessels results in significant operational costs, as well as the bio-security risk associated with the transport of marine pests. Biofouling is particularly rapid in sea-chest water intakes due to elevated temperatures and circulating flow. Inspection challenges are exacerbated, as sea chests are difficult to inspect and clean. This paper aims to present a method that utilises the flexibility and low-batch capabilities of additive manufacture to manufacture custom sea-chest inserts that eliminate circulating flow and increase the uniformity of shear stress distributions to enable more constant ablation of anti-biofouling coatings.

Design/methodology/approach

An automated design procedure has been developed to optimise sea-chest insert geometry to achieve desirable flow characteristics, while eliminating the necessity for support material in FDM manufacture – thereby significantly reducing build cost and time.

Findings

Numerical flow simulation confirms that the fluid-flow approximation is robust for optimising sea-chest insert geometry. Insert geometry can be manipulated to enable support-free additive manufacture; however, as the threshold angle for support-free manufacture increases, the set of feasible sea-chest aspect ratios decreases.

Research limitations/implications

The surface of revolution that defines the optimal insert geometry may result in features that are not compatible with additive manufacture constraints. An alternate geometry is proposed that may be more useful in practice without compromising anti-biofouling properties.

Practical implications

Marine sea-chest biofouling results in significant negative environmental and economic consequence. The method developed in this paper can reduce the negative impact of sea-chest biofouling.

Social implications

Marine sea-chest biofouling results in significant resource consumption and emissions. The method developed in this paper can reduce the negative impact of sea-chest biofouling.

Originality/value

The method presented in this paper provides an entirely original opportunity to utilise additive manufacture to mitigate the effects of marine biofouling.

Article
Publication date: 3 April 2024

Shiang-Wuu Perng, Horng Wen Wu and De-An Huang

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Abstract

Purpose

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Design/methodology/approach

The novel design of this study is accomplished by inserting several twisted tapes and drilling some circular perforations near the tape edge (C1, C3, C5: solid tapes; C2, C4, C6: perforated tapes). The turbulence flow appearances and thermal convective features are examined for various Reynolds numbers (8,000–14,000) using the renormalization group (RNG) κε turbulent model and Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm.

Findings

The simulated outcomes reveal that inserting more perforated-twisted tapes into the heated round tube promotes turbulent thermal convection effectively. A swirling flow caused by the twisted tapes to produce the secondary flow jets between two reverse-spin tapes can combine with the main flow passing through the perforations at the outer edge to enhance the vortex flow. The primary factors are the quantity of twisted tapes and with/without perforations, as the perforation ratio remains at 2.5 in this numerical work. Weighing friction along the tube, C6 (four reverse-spin perforated-twisted tapes) brings the uppermost thermal-hydraulic performance of 1.23 under Re = 8,000.

Research limitations/implications

The constant thermo-hydraulic attributes of liquid water and the steady Newtonian fluid are research limitations for this simulated work.

Practical implications

The simulated outcomes will avail the inner-pipe design of a heat exchanger inserted by multiple perforated twisted tapes to enhance superior heat transfer.

Originality/value

These twisted tapes form tiny circular perforations along the tape edge to introduce the fluid flow through these bores and combine with the secondary flow induced between two reverse-spin tapes. This scheme enhances the swirling flow, turbulence intensity and fluid mixing to advance thermal convection since larger perforations cannot produce large jet velocity or the position of perforations is too far from the tape edge to generate a separated flow. Consequently, this work contributes a valuable cooling mechanism toward thermal engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 April 2016

Mazen M. Abu-Khader

The purpose of this paper is to update a previous review work (Abu-khader, 2006, Heat & Mass Transfer, Vol. 43 No. 2, pp. 123-134) and highlight the new research methods on the…

Abstract

Purpose

The purpose of this paper is to update a previous review work (Abu-khader, 2006, Heat & Mass Transfer, Vol. 43 No. 2, pp. 123-134) and highlight the new research methods on the use of twisted tapes and the application of different configurations of these tape inserts. Also, based on a vast collection of experimental data in open literature, generalized Nusselt number (Nu) and friction factor (f) correlations as the function of twist ratio were developed with maximum error around ± 15 per cent. The present paper examines several case studies which apply complex configurations of twisted inserts.

Design/methodology/approach

Using the developed correlations, an equivalent Nusselt number and friction factor of typical type twist insert were generated which achieved the same performance of each complex configuration.

Findings

The open literature contains large number of wired and complex configurations of twisted tape inserts. Their applicability to real industrial use is questionable.

Originality/value

This paper presents an up-to-date review on the use of twisted tape in research, highlights the different tape configurations and proposes general correlations for traditional twisted tape inserts.

Details

World Journal of Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 November 2007

Betül Ayhan‐Sarac, Bekir Karlık, Tülin Bali and Teoman Ayhan

The purpose of this paper is to study experimentally enhancement of heat transfer in a tube with axial swirling‐flow promoters. The geometric features of flow geometry to improve…

Abstract

Purpose

The purpose of this paper is to study experimentally enhancement of heat transfer in a tube with axial swirling‐flow promoters. The geometric features of flow geometry to improve heat transfer can be selected in order to yield the maximum opposite reduction in heat exchange flow irreversibility by using exergy‐destruction method. The paper seeks to illustrate the use of neural network approach to analyze heat transfer enhancement data for further study in the scope of the experimental program.

Design/methodology/approach

For this purpose, 402 experimental measurements are collected. About 225 of those are used as training data for neural networks, the rest is used for testing. Then, these testing results of artificial neural network (ANN) and experimental data are compared. A formula for presenting exergy loses in a tubular heat exchanger is derived first and then the thermodynamic optimum instead of economic optimum is found by minimizing the exergy losses in the system.

Findings

Results from all configurations studied show that the heat transfer rate of the heated increases when the swirling‐flow promoter is inserted. From the heat transfer improvement number defined, it is observed that about 100 percent increase in heat transfer rate and five times increase in the pressure drop can be achieved under the condition of constant flow for the single promoter which has three blades, its blade angle is 30° and its location is in the middle of the tube length.

Research limitations/implications

The back‐propagation (BP) algorithm was selected as the neural network algorithm, which uses the generalized delta learning rule. The training time of BP algorithm is considerably long. However, the testing of our neural network is real‐time.

Practical implications

The experimental setup is established to collect the experimental data. It consists of an entrance region, test region (heat exchanger and steam generator), and, flow measurement and control. Also, a software program of neural networks trained BP is written by using Pascal high‐level languages.

Originality/value

An alternative and new approach is proposed in the paper to find optimum flow geometry for a pipe flow with an axial swirling‐flow promoter inserts. It is too difficult to predict the response of a complex physical system that cannot be easily modeled mathematically. The result thus obtained compare well with experimental results, but the computational effort of the ANN and time required in the analysis is much faster as compared. These results show that the ANN can be used efficiently for prediction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 March 2012

M.F. Rahmat and N.S. Kamaruddin

The use of pneumatic conveying of solid bulk over long distance has become a popular technique due to low operational cost, low maintenance requirement, layout flexibility and…

Abstract

Purpose

The use of pneumatic conveying of solid bulk over long distance has become a popular technique due to low operational cost, low maintenance requirement, layout flexibility and ease of automation. The purpose of this paper is to identifity the flow regime in a pneumatic conveyor system by electrodynamic sensor placed around the pipe using fuzzy logic tools.

Design/methodology/approach

Electrical charge tomography is used to detect the existence of inherent charge on the moving particles through the pipe. Linear back projection algorithm and filtered back projection algorithm are employed to produce tomography image. Baffles of different shapes are inserted to create various flow regimes, such as full flow, three quarter flow, half flow and quarter flow. Fuzzy logic tools are used to identify different flow regimes and produce filtered back concentration profiles for each flow regime.

Findings

The results show significant improvement in the pipe flow image resolution and measurement.

Originality/value

This paper presents a flow identifier method using electrical charge tomography and fuzzy logic to monitor solid particles flow in pipeline.

Article
Publication date: 29 May 2019

Majid Siavashi and Shirzad Iranmehr

The purpose of this study is to analyze a new idea for external flow over a cylinder to increase the heat transfer and reduce pressure drop. Using wedge-shaped porous media in the…

Abstract

Purpose

The purpose of this study is to analyze a new idea for external flow over a cylinder to increase the heat transfer and reduce pressure drop. Using wedge-shaped porous media in the front and wake regions of the cylinder can improve its hydrodynamic, and the rotating flow in the wake region can enhance the heat transfer with increased porous–liquid contact. Permeability plays a vital role, as a high-permeable medium improves heat transfer, whereas a low-permeable region improves the hydrodynamic.

Design/methodology/approach

Therefore, in the current research, external forced convection of nanofluid laminar flow over a bundle of cylinders is simulated using a two-phase mixture model. Four cases with different porous blocks around the cylinder are assessed: rectangular porous; wedge shape in trailing edge (TEP); wedge shape in leading and trailing edges (LTEP); and no porous block case. Also, three different lengths of wedge-shaped regions are considered for TEP and LTEP cases.

Findings

Results are presented in terms of Nusselt (Nu), Euler (Eu) and the performance evaluation criterion (PEC) numbers for various Reynolds (Re) and Darcy (Da) numbers.

Originality/value

It was found that in most situations, LTEP case provides the highest Nu and PEC values. Also, optimal Re and porous medium length exist to maximize PEC, depending on the values of Da and nanofluid volume fraction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2019

Reza Dadsetani, Ghanbar Ali Sheikhzadeh, Mohammad Reza Hajmohammadi and Mohammad Reza Safaei

Electronic components’ efficiency is the cornerstone of technology progress. The cooling process used for electronic components plays a main role in their performance. Embedded…

Abstract

Purpose

Electronic components’ efficiency is the cornerstone of technology progress. The cooling process used for electronic components plays a main role in their performance. Embedded high-conductivity material and provided microchannel heat sink are two common cooling methods. The former is expensive to implement while the latter needs micro-pump, which consumes energy to circulate the flow. The aim of this study is providing a new configuration and method for improving the performance of electronic components.

Design/methodology/approach

To manage these challenges and improve the cooling efficiency, a novel method named Hybrid is presented here. Each method's performance has been investigated, and the results are widely compared with others. Considering the micro-pump power, the supply of the microchannel flow and the thermal conductivity ratio (thermal conductivity ratio is defined as the ratio of thermal conductivity of high thermal conductivity material to the thermal conductivity of base solid), the maximum disk temperature of each method was evaluated and compared to others.

Findings

The results indicated that the Hybrid method can reduce the maximum disk temperature up to 90 per cent compared to the embedded high thermal conductivity at the same thermal conductivity ratio. Moreover, the Hybrid method further reduces the maximum disk temperature up to 75 per cent compared to the microchannel, at equivalent power consumption.

Originality/value

The information in this research is presented in such a way that designers can choose the desired composition, the limited amount of consumed energy and the high temperature of the component. According to the study of radial-hybrid configuration, the different ratio of microchannel and materials with a high thermal conductivity coefficient in the constant cooling volume was investigated. The goal of the investigation was to decrease the maximum temperature of a plate on constant energy consumption. This aim has been obtained in the radial-hybrid configuration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 July 2010

M.Q. Al‐Odat

The purpose of this paper is to conduct a full three‐dimensional numerical analysis to simulate the thermal behavior of high speed steel (HSS) cutting tool, with temperature…

Abstract

Purpose

The purpose of this paper is to conduct a full three‐dimensional numerical analysis to simulate the thermal behavior of high speed steel (HSS) cutting tool, with temperature dependent thermal properties, in dry machining with embedded heat pipe (HP), and investigate the effects of HP installation, variable thermal properties, generated heat flux and cutting speed.

Design/methodology/approach

The heat transfer equation used to predict cutting tool temperature is parabolic partial differential equation. Grid points including independent variables are initially formed in solution of partial differential equation by finite element method (FEM). In this paper, one‐dimensional heat transfer equation with variable thermophysical properties is solved by FEM.

Findings

In this paper, the heat transfer equation in cutting tool is solved for variable thermophysical properties and the temperature field and temperature history are obtained. Variable thermophysical properties are considered to display the temperature fields in the cutting tool.

Originality/value

A full three‐dimensional numerical analysis is conducted to simulate the thermal behavior of HSS cutting tool, with temperature dependent thermal properties, in dry machining with embedded HP. The heat conduction equation is solved by FEM analysis.

Details

Engineering Computations, vol. 27 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 7000