Search results

1 – 10 of over 19000
Article
Publication date: 3 January 2017

Abderrazzak El Boukili

The purpose of this paper is to develop and apply accurate and original models to understand and analyze the effects of the fabrication temperatures on thermal-induced stress and…

Abstract

Purpose

The purpose of this paper is to develop and apply accurate and original models to understand and analyze the effects of the fabrication temperatures on thermal-induced stress and speed performance of nano positively doped metal oxide semiconductor (pMOS) transistors.

Design/methodology/approach

The speed performances of nano pMOS transistors depend strongly on the mobility of holes, which itself depends on the thermal-induced extrinsic stress σ. The author uses a finite volume method to solve the proposed system of partial differential equations needed to calculate the thermal-induced stress σ accurately.

Findings

The thermal extrinsic stress σ depends strongly on the thermal intrinsic stress σ0, thermal intrinsic strain ε0, elastic constants C11 and C12 and the fabrication temperatures. In literature, the effects of fabrication temperatures on C11 and C12 needed to calculate thermal-induced stress σ0 have been ignored. The new finding is that if the effects of fabrication temperatures on C11 and C12 are ignored, then, the values of stress σ0 and σ will be overestimated and, then, not accurate. Another important finding is that the speed performance of nano pMOS transistors will increase if the fabrication temperature of silicon-germanium films used as stressors is increased.

Practical implications

To predict correctly the thermal-induced stress and speed performance of nano pMOS transistors, the effects of fabrication temperatures on the elastic constants required to calculate the thermal-induced intrinsic stress σ0 should be taken into account.

Originality/value

There are three levels of originalities. The author considers the effects of the fabrication temperatures on extrinsic stress σ, intrinsic stress σ0 and elastic constants C11 and C12.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 March 1999

G. Chen and H.A. Hadim

The objective of the present work was to perform a detailed numerical study of laminar forced convection in a three‐dimensional square duct packed with an isotropic granular…

Abstract

The objective of the present work was to perform a detailed numerical study of laminar forced convection in a three‐dimensional square duct packed with an isotropic granular material and saturated with a Newtonian fluid. Hydrodynamic and heat transfer results are reported for three different thermal boundary conditions. The flow in the porous medium was modeled using the semi‐empirical Brinkman‐Forchheimer‐extended Darcy model which also included the effects of variable porosity and thermal dispersion. Empirical models for variable porosity and thermal dispersion were determined based on existing three‐dimensional experimental measurements. Parametric studies were then conducted to investigate the effects of particle diameter, Reynolds number, Prandtl number and thermal conductivity ratio. The results showed that channeling phenomena and thermal dispersion effects are reduced considerably in a three‐dimensional duct compared with previously reported results for a two‐dimensional channel. It was found that the Reynolds number affects mainly the velocity gradient in the flow channeling region, while the particle diameter affects the width of the flow channeling region. As the Reynolds number increases or as the particle diameter decreases (i.e., when the inertia and thermal dispersion effects are enhanced), the Nusselt number increases. The effects of varing the Prandtl number on the magnitude of the Nusselt number were found to be more significant than those of the thermal conductivity ratio. Finally, the effects of varing the duct aspect ratio on the friction factor can be neglected for small particle diameter (Dp ≤ 0.01) or for high particle Reynolds number (Red ≥ 1000) due to the dominant bulk damping resistance from the porous matrix (Darcy term) or strong inertia effects (Forchheimer term), respectively.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 9 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1998

Shih‐Wen Hsiao

The variable porosity and thermal dispersion effects on natural convection in an inclined porous cavity are investigated numerically. The wall effect on porosity is approximated…

Abstract

The variable porosity and thermal dispersion effects on natural convection in an inclined porous cavity are investigated numerically. The wall effect on porosity is approximated by an exponential function and its effect on thermal dispersion is modeled in terms of a dispersive length. Numerical results show that both variable porosity and thermal dispersion effects increase the temperature gradient adjacent to the wall resulting in the enhancement of surface heat flux. These effects become important when the dimensionless particle diameter is increased. The variable porosity effect increases the fluid velocity near the wall, consequently enhancing convective heat transfer. The Prandtl number effect on the Nusselt number is small for Prandtl number greater than one, but increases as the Prandtl number decreases below one. The effect of thermal conductivity ratio on the Nusselt number is greater at low Rayleigh numbers where conduction heat transfer is predominant. A comparison between theoretical and experimental results shows that the calculated Nusselt numbers which take into account variable porosity and thermal dispersion effects have the best agreement with experimental data.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2016

Shurong Hu, Mengmeng Zhao and Jun Li

– The purpose of this paper is to explore the effects of wind direction and ease allowance on thermal comfort in sportswear.

Abstract

Purpose

The purpose of this paper is to explore the effects of wind direction and ease allowance on thermal comfort in sportswear.

Design/methodology/approach

The effects of wind direction (front, side, back and calm (no wind) 1.5 m/s) and seven magnitudes of ease allowance on sportswear thermal insulation and surface temperature were investigated. An 11 zones’ thermal manikin was used to acquire the static thermal insulation. Surface temperature was captured by a thermal imager.

Findings

The results showed that the wind was a significant effect on thermal performance, however, wind direction effect was only significant in the segment covered with multilayer fabric, such as the abdomen and hip (p=0.034). Although the ease allowance influenced the overall thermal insulation obviously, the difference between seven sizes suits was not significant. Nevertheless, the ease allowance affected the surface temperature of chest and back significantly (p=0.023, 0.007). Correlation between thermal insulation and surface temperature was negative, and correlation level was degraded when affected by wind factor.

Research limitations/implications

Sportswear’s fabric and style did not discussed as effect factors. It would be taken into accounted in the future research.

Originality/value

Wind direction impact thermal comfort in multilayer regions significantly. It is a reference to improve sportswear’s comfort design.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 21 August 2009

Florian Schüßler, Denis Kozic and Jörg Franke

The purpose of the paper is to focus on the research into components with specific thermal properties and their influences on the reflow soldering process.

Abstract

Purpose

The purpose of the paper is to focus on the research into components with specific thermal properties and their influences on the reflow soldering process.

Design/methodology/approach

After a brief introduction, the paper gives an overview of the necessity of thermal management on printed circuit boards (PCBs) and the possible effects on the manufacturing of electronic devices. In the next sections, different test boards are presented for investigations into different thermal effects during soldering. The last section deals with the influences of molded interconnected devices (MIDs) on the reflow soldering process.

Findings

The investigations show that components from the thermal management influence the reflow soldering process more or less. The highest impacts on the soldering process are from components with a thermal connection to the electrical component and its solder joint. All results from the investigations have in common that the thermal influence can only be compensated by increasing the temperature during soldering. However, this significantly increases the risk of overheating the electrical components or the PCB itself.

Research limitations/implications

This paper shows only the influence of some of the effects caused by thermal management on the reflow soldering process. Furthermore, vapour phase soldering is not considered, but actual investigations are carried out on vapour phase soldering ovens as well.

Originality/value

Thermal management becomes more and more important with the increasing functionality of electrical components and electronic devices. This topic has been the subject of a large number of articles. However, this paper deals with influences that thermal management has on the soldering process during the manufacturing of the electronic device.

Details

Circuit World, vol. 35 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 6 November 2017

Siva Reddy Sheri, Chamkha Ali. J. and Anjan Kumar Suram

The purpose of this paper is to analyze the thermal-diffusion and diffusion-thermo effects on magnetohydrodynamics (MHD) natural convective flow through porous medium in a…

Abstract

Purpose

The purpose of this paper is to analyze the thermal-diffusion and diffusion-thermo effects on magnetohydrodynamics (MHD) natural convective flow through porous medium in a rotating system with ramped temperature.

Design/methodology/approach

Using the non-dimensional variables, the flow governing equations along with corresponding initial and boundary conditions have been transformed into non-dimensional form. These non-dimensional partial differential equations are solved by using finite element method. This method is powerful and stable. It provides excellent convergence and flexibility in providing solutions.

Findings

The effects of Soret number, Dufour number, rotation parameter, magnetic parameter, Hall current parameter, permeability parameter, thermal Grashof number, solutal Grashof number, Prandtl number, thermal radiation parameter, heat absorption parameter, Schmidt number, chemical reaction parameter and time on the fluid velocities, temperature and concentration are represented graphically in a significant way and the influence of pertinent flow governing parameters on the skin frictions and Nusselt number are presented in tabular form. On the other hand, a comparison for validation of the numerical code with previously published work is performed, and an excellent agreement is observed for the limited case existing literature.

Practical implications

A very useful source of information for researchers on the subject of MHD flow through porous medium in a rotating system with ramped temperature.

Originality/value

The problem is moderately original, as it contains many effects like thermal-diffusion (Soret) and diffusion-thermo (Dufour) effects and chemical reaction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 August 2016

Mohammad yaghoub Abdollahzadeh Jamalabadi

The purpose of this paper is to find the time dependent thermal creep stress relaxation of a turbine blade and to investigate the effect thermal radiation of the adjacent turbine…

Abstract

Purpose

The purpose of this paper is to find the time dependent thermal creep stress relaxation of a turbine blade and to investigate the effect thermal radiation of the adjacent turbine blades on the temperature distribution of turbine blade and creep relaxation.

Design/methodology/approach

For this analysis, the creep flow behavior of Moly Ascoloy in operational temperature of gas turbine in full scale geometry is studied for various thermal radiation properties. The commercial software is used to pursue a coupled fields analysis for turbine blades in view of the structural force, materials kinematic hardening, and steady-state temperature field.

Findings

During steady-state operation, the thermal stress was found to be decreasing, whereas by considering the thermal radiation this rate was noticed to increase slightly. Also by increase of the distance between stator blades the thermal radiation effect is diminished. Finally, by decrease of the blade distance the failure probability and creep plastic deformation decrease.

Research limitations/implications

This paper describes the effect of thermal radiation in thermal-structural analysis of the gas turbine stator blade made of the super-alloy M-152.

Practical implications

Blade failures in gas turbine engines often lead to loss of all downstream stages and can have a dramatic effect on the availability of the turbine engines. There are many components in a gas turbine engine, but its performance is highly profound to only a few. The majority of these are hotter end rotating components.

Social implications

Three-dimensional finite element thermal and stress analyses of the blade were carried out for the steady-state full-load operation.

Originality/value

In the previous works the thermal radiation effects on creep behavior of the turbine blade have not performed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 May 2019

Pingping He, Feng Gao, Yan Li, Wenwu Wu and Dongya Zhang

Under fix-position preload, the high rotation speed of the angular contact ball bearing exacerbates the frictional heat generation, which causes the increase of the bearing…

Abstract

Purpose

Under fix-position preload, the high rotation speed of the angular contact ball bearing exacerbates the frictional heat generation, which causes the increase of the bearing temperature and the thermal expansion. The high rotation speed also leads to the centrifugal expansion of the bearing. Under the thermal and centrifugal effect, the structural parameters of the bearing change, affecting the mechanical properties of the bearing. The mechanical properties of the bearing determine its heat generation mechanism and thermal boundary conditions. The purpose of this paper is to study the effect of centrifugal and thermal effects on the thermo-mechanical characteristics of an angular contact ball bearing with fix-position preload.

Design/methodology/approach

Because of operating conditions, elastic deformation occurs between the ball and the raceway. Assuming that the surfaces of the ball and channel are absolutely smooth and the material is isotropic, quasi-static theory and thermal network method are used to establish the thermo-mechanical coupling model of the bearing, which is solved by Newton–Raphson iterative method.

Findings

The higher the rotation speed, the greater the influence of centrifugal and thermal effects on the bearing dynamic parameters, temperature rise and actual axial force. The calculation results show that the effects of thermal field on bearing dynamic parameters are more significant than the centrifugal effect. The temperature rise and actual axial force of the bearing are measured. Comparing the calculation and the experimental results, it is found that the temperature rise and the actual axial force of the bearing are closer to reality considering thermal and centrifugal effects.

Originality/value

In the past studies, the thermo-mechanical coupling characteristics research and experimental verification of angular contact ball bearing with fix-position preload are not concerned. Research findings of this paper provide theoretical guidance for spindle design.

Details

Industrial Lubrication and Tribology, vol. 71 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 April 2014

A. Rashad and A. Chamkha

The purpose of this paper is to study the effects of chemical reaction, thermal radiation and Soret and Dufour effects of heat and mass transfer by natural convection flow about a…

Abstract

Purpose

The purpose of this paper is to study the effects of chemical reaction, thermal radiation and Soret and Dufour effects of heat and mass transfer by natural convection flow about a truncated cone in porous media.

Design/methodology/approach

The problem is formulated and solved numerically by an accurate implicit finite-difference method.

Findings

It is found that the Soret and Dufour effects as well as the thermal radiation and chemical reaction cause significant effects on the heat and mass transfer charateristics.

Originality/value

The problem is relatively original as it considers Soret and Dufour as well as chemical reaction and porous media effects on this type of problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 June 2016

Ashraf Muhammad, Ali J Chamkha, S Iqbal and Masud Ahmad

The purpose of this paper is to report a numerical solution for the problem of steady, two dimensional boundary layer buoyant flow on a vertical magnetized surface, when both the…

Abstract

Purpose

The purpose of this paper is to report a numerical solution for the problem of steady, two dimensional boundary layer buoyant flow on a vertical magnetized surface, when both the viscosity and thermal conductivity are assumed to be temperature-dependent. In this case, the motion is governed by a coupled set of three nonlinear partial differential equations, which are solved numerically by using the finite difference method (FDM) by introducing the primitive variable formulation. Calculations of the coupled equations are performed to investigate the effects of the different governing parameters on the profiles of velocity, temperature and the transverse component of magnetic field. The effects of the thermal conductivity variation parameter, viscosity variation parameter, magnetic Prandtl number Pmr, magnetic force parameter S, mixed convection parameter Ri and the Prandtl number Pr on the flow structure and heat transfer characteristics are also examined.

Design/methodology/approach

FDM.

Findings

It is noted that when the Prandtl number Pr is sufficiently large, i.e. Pr=100, the buoyancy force that driven the fluid motion is decreased that decrease the momentum boundary layer and there is no change in thermal boundary layer is noticed. It is also noted that due to slow motion of the fluid the magnetic current generates which increase the magnetic boundary layer thickness at the surface. It is observed that the momentum boundary layer thickness is increased, thermal and magnetic field boundary layers are decreased with the increase of thermal conductivity variation parameter =100. The maximum boundary layer thickness is increased for =100 and there is no change seen in the case of thermal boundary layer thickness but magnetic field boundary layer is deceased. The momentum boundary layer thickness shoot quickly for =40 but is very smooth for =50.There is no change is seen for the case of thermal boundary layer and very clear decay for =40 is noted.

Originality/value

This work is original research work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 19000