Search results

1 – 10 of over 10000
Article
Publication date: 18 January 2013

Yap Boon Kar, Noor Azrina Talik, Zaliman Sauli, Jean Siow Fei and Vithyacharan Retnasamy

The increased use recently of area‐array technology in electronic packaging has similarly increased the importance of predicting the thermal distribution of area‐array solder…

Abstract

Purpose

The increased use recently of area‐array technology in electronic packaging has similarly increased the importance of predicting the thermal distribution of area‐array solder interconnection. As the interconnection technology for flip chip package is getting finer and smaller, it is extremely difficult to obtain the accurate values of thermal stresses by direct experimental measurements. Different types of solder bumps used for interconnection would also influence the thermal distribution within the package. Because the solder balls are too small for direct measurement of their stresses, finite element method (FEM) was used for obtaining the stresses instead.

Design/methodology/approach

This paper will discuss the results of the thermal stress distribution using numerical method via ABAQUS software. The variation of the thermal stress distribution with the temperature gradient model was evaluated to study the effects of the different material thermal conductivity of solder bumps used. A detailed 2D finite element model was constructed to perform 2D plain strain elastoplastic analysis to predict areas of high stress.

Findings

It is found that thermal distribution of solder bumps starts to propagate from the top region to the bottom region of the solder balls. Other than that, thermal stress effect increases in parallel with the increasing of the temperature. The simulation results shows that leaded solder balls, SnPb have higher maximum thermal stress level compared to lead‐free SAC solder balls.

Originality/value

The paper describes combination of stress with thermal loading correlation on a flip chip model. The work also shows how the different thermal conductivity on solder balls influences the thermal induced stress on the flip chip package.

Details

Microelectronics International, vol. 30 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 March 1989

D.E. Riemer

This paper introduces thermalstress analysis methods which follow electrical engineering procedures. The spring constant or c‐value is found to be related to the electrical…

Abstract

This paper introduces thermalstress analysis methods which follow electrical engineering procedures. The spring constant or c‐value is found to be related to the electrical impedance, combining dimensions and material characteristics in a performance parameter which simplifies calculations. Voltage is used to represent thermal deformation, and thermal forces are modelled as currents. Relationships equivalent to Ohm's Law are applied to calculate thermal stresses in leads or traces of surface‐mount assemblies. The thermal performance of laminates, e.g., thermal expansion coefficients of interconnect boards with a restraining core, and the thermal stresses in the bonded layers, are derived from the analysis of an electrical network which represents the composite structure. The method provides visual concepts which facilitate a first‐order solution of engineering problems related to thermal stress.

Details

Soldering & Surface Mount Technology, vol. 1 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 5 September 2016

Ying Xie, Ze Wang, Xueting Shan and Yangyang Li

Thermal stress of the rotor in a squirrel cage induction motor is generated due to the temperature rise, and the structure of the rotor will be destroyed if the stress acted on…

Abstract

Purpose

Thermal stress of the rotor in a squirrel cage induction motor is generated due to the temperature rise, and the structure of the rotor will be destroyed if the stress acted on the rotor exceeds its limits, so the thermal stress is also one of the main causes led to broken bar fault. The purpose of this paper is to report the thermal stress coupled analysis for the induction motor with healthy and faulty rotor, and to find the variation tendency of the temperature and thermal stress due to broken bars, and the part most likely to break in the rotor as a result of the thermal stress load are identified.

Design/methodology/approach

The steady temperature and thermal stress of the rotor in the case of the healthy and faulty conditions are calculated by finite element method, and the 3D model of the motor used in the experiments is established and the experimental results are presented for both healthy and faulty machines.

Findings

The influence of the broken bars fault on the motor thermal profile and thermal stress can be found, and it explains why the breaking point always appears in the joint of the bars and end rings.

Originality/value

The paper presents the 3D thermal stress coupled model and performance characteristics of induction motor with broken bars. The reasonable constraint is established according to the contact of components each other, and more reasonable fracture location is selected. The results obtained by the simulation model are in a good agreement with practical situation, because the effect of skewed rotor were taken into consideration in the process of simulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 October 2020

Muhammad Umair, Faisal Khan and Wasiq Ullah

Field excited flux switching machines (FEFSM) are preferred over induction and synchronous machines due to the confinement of all excitation sources on the stator leaving a robust…

Abstract

Purpose

Field excited flux switching machines (FEFSM) are preferred over induction and synchronous machines due to the confinement of all excitation sources on the stator leaving a robust rotor. This paper aims to perform coupled electromagnetic thermal analysis and stress analysis for single phase FEFSM as, prolonged high-speed operational time with core and copper losses makes it prone to stress and thermal constraints as temperature rise in machine lead to degraded electromagnetic performance whereas the violation of the principle stress limit may result in mechanical deformation of the rotor.

Design/methodology/approach

This paper presents the implementation of coupled electromagnetic-thermal and rotor stress analysis on single-phase FEFSM with non-overlap winding configurations using finite element analysis (FEA) methodology in JMAG V. 18.1. three-dimensional (3D) magnetic loss analysis is performed and extended to 3D thermal analysis to predict temperature distribution on various parts of the machine whereas Stress analysis predicts mechanical stress acting upon edges and faces of the rotor.

Findings

Analysis reveals that temperature distribution and rotor stress on the machine is within acceptable limits. A maximum temperature rise of 37.7°C was noticed at armature and field windings, temperature distribution in stator near pole proximity was 35°C whereas no significant change in rotor temperature was noticed. Furthermore, principal stress at the speed of 3,000 rpm and 30,000 rpm was found out to be 0.0305 MPa 3.045 MPa, respectively.

Research limitations/implications

The designed machine will be optimized for improvement of electromagnetic performance followed by hardware implementation and experimental testing in the future.

Practical implications

The model is developed for axial fan applications.

Originality/value

Thermal analysis is not being implemented on FEFSM for axial fan applications which is an important analysis to ensure the electromagnetic performance of the machine.

Details

World Journal of Engineering, vol. 17 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2604

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 September 2019

Rafael Quelho de Macedo, Rafael Thiago Luiz Ferreira and Kuzhichalil Jayachandran

This paper aims to present experimental and numerical analyses of fused filament fabrication (FFF) printed parts and show how mechanical characteristics of printed ABS-MG94…

Abstract

Purpose

This paper aims to present experimental and numerical analyses of fused filament fabrication (FFF) printed parts and show how mechanical characteristics of printed ABS-MG94 (acrylonitrile butadiene styrene) are influenced by the void volume fraction, cooling rate and residual thermal stresses.

Design/methodology/approach

Printed specimens were experimentally tested to evaluate the mechanical properties for different printing speeds, and micrographs were taken. A thermo-mechanical finite element model, able to simulate the FFF process, was developed to calculate the temperature fields in time, cooling rate and residual thermal stresses. Finally, the experimental mechanical properties and the microstructure distribution could be explained by the temperature fields in time, cooling rate and residual thermal stresses.

Findings

Micrographs revealed the increase of void volume fraction with the printing speed. The variations on voids were associated to the temperature fields in time: when the temperatures remained high for longer periods, less voids were generated. The Young's Modulus of the deposited filament varied according to the cooling rate: it decreased when the cooling rate increased. The influence of the residual thermal stresses and void volume fraction on the printed parts failure was also investigated: in the worst scenarios evaluated, the void volume fraction reduced the strength in 9 per cent, while the residual thermal stresses reduced it in 3.8 per cent.

Originality/value

This work explains how the temperature fields can affect the void volume fraction, Young's Modulus and failure of printed parts. Experimental and numerical results are shown. The presented research can be used to choose printing parameters to achieve desired mechanical properties of FFF printed parts.

Details

Rapid Prototyping Journal, vol. 25 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 January 2017

Abderrazzak El Boukili

The purpose of this paper is to develop and apply accurate and original models to understand and analyze the effects of the fabrication temperatures on thermal-induced stress and…

Abstract

Purpose

The purpose of this paper is to develop and apply accurate and original models to understand and analyze the effects of the fabrication temperatures on thermal-induced stress and speed performance of nano positively doped metal oxide semiconductor (pMOS) transistors.

Design/methodology/approach

The speed performances of nano pMOS transistors depend strongly on the mobility of holes, which itself depends on the thermal-induced extrinsic stress σ. The author uses a finite volume method to solve the proposed system of partial differential equations needed to calculate the thermal-induced stress σ accurately.

Findings

The thermal extrinsic stress σ depends strongly on the thermal intrinsic stress σ0, thermal intrinsic strain ε0, elastic constants C11 and C12 and the fabrication temperatures. In literature, the effects of fabrication temperatures on C11 and C12 needed to calculate thermal-induced stress σ0 have been ignored. The new finding is that if the effects of fabrication temperatures on C11 and C12 are ignored, then, the values of stress σ0 and σ will be overestimated and, then, not accurate. Another important finding is that the speed performance of nano pMOS transistors will increase if the fabrication temperature of silicon-germanium films used as stressors is increased.

Practical implications

To predict correctly the thermal-induced stress and speed performance of nano pMOS transistors, the effects of fabrication temperatures on the elastic constants required to calculate the thermal-induced intrinsic stress σ0 should be taken into account.

Originality/value

There are three levels of originalities. The author considers the effects of the fabrication temperatures on extrinsic stress σ, intrinsic stress σ0 and elastic constants C11 and C12.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 October 2014

Abderrazzak El Boukili

The purpose of this paper is to provide a new three dimension physically based model to calculate the initial stress in silicon germanium (SiGe) film due to thermal mismatch after…

Abstract

Purpose

The purpose of this paper is to provide a new three dimension physically based model to calculate the initial stress in silicon germanium (SiGe) film due to thermal mismatch after deposition. We should note that there are many other sources of initial stress in SiGe films or in the substrate. Here, the author is focussing only on how to model the initial stress arising from thermal mismatch in SiGe film. The author uses this initial stress to calculate numerically the resulting extrinsic stress distribution in a nanoscale PMOS transistor. This extrinsic stress is used by industrials and manufacturers as Intel or IBM to boost the performances of the nanoscale PMOS and NMOS transistors. It is now admitted that compressive stress enhances the mobility of holes and tensile stress enhances the mobility of electrons in the channel.

Design/methodology/approach

During thermal processing, thin film materials like polysilicon, silicon nitride, silicon dioxide, or SiGe expand or contract at different rates compared to the silicon substrate according to their thermal expansion coefficients. The author defines the thermal expansion coefficient as the rate of change of strain with respect to temperature.

Findings

Several numerical experiments have been used for different temperatures ranging from 30 to 1,000°C. These experiments did show that the temperature affects strongly the extrinsic stress in the channel of a 45 nm PMOS transistor. On the other hand, the author has compared the extrinsic stress due to lattice mismatch with the extrinsic stress due to thermal mismatch. The author found that these two types of stress have the same order (see the numerical results on Figures 4 and 12). And, these are great findings for semiconductor industry.

Practical implications

Front-end process induced extrinsic stress is used by manufacturers of nanoscale transistors as the new scaling vector for the 90 nm node technology and below. The extrinsic stress has the advantage of improving the performances of PMOSFETs and NMOSFETs transistors by enhancing mobility. This mobility enhancement fundamentally results from alteration of electronic band structure of silicon due to extrinsic stress. Then, the results are of great importance to manufacturers and industrials. The evidence is that these results show that the extrinsic stress in the channel depends also on the thermal mismatch between materials and not only on the material mismatch.

Originality/value

The model the author is proposing to calculate the initial stress due to thermal mismatch is novel and original. The author validated the values of the initial stress with those obtained by experiments in Al-Bayati et al. (2005). Using the uniaxial stress generation technique of Intel (see Figure 2). Al-Bayati et al. (2005) found experimentally that for 17 percent germanium concentration, a compressive initial stress of 1.4 GPa is generated inside the SiGe layer.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 1993

A. Bjorneklett, L. Halbo, H. Kristiansen, L.M. Nilsen, T. Storfossene and T. Tuhus

A new hybrid substrate technology for power electronic applications has been characterised by thermal resistance and mechanical stress measurements. The new substrate utilises…

Abstract

A new hybrid substrate technology for power electronic applications has been characterised by thermal resistance and mechanical stress measurements. The new substrate utilises thermal spray technology for deposition of dielectric layer and electrical conductors. The results are compared with the more established technology of alumina substrates with direct copper bonding (DCB) metallisation. Silicon test chips for thermal resistance and mechanical stress measurement were used for the characterisation. The experimental results were compared with finite element analysis and a reasonable agreement was found.

Details

Microelectronics International, vol. 10 no. 1
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 6 March 2017

Jan Taler, Bohdan Weglowski and Marcin Pilarczyk

The purpose of this paper is to present a method for monitoring transient thermal stresses. This paper also presents the analysis of thermal stresses of boiler pressure element…

Abstract

Purpose

The purpose of this paper is to present a method for monitoring transient thermal stresses. This paper also presents the analysis of thermal stresses of boiler pressure element heating during the start-up in real conditions. The inverse methods are used to determine the wall temperature, whereas the commercial software ANSYS is used to determine the thermal stresses in the pressure component.

Design/methodology/approach

The method is based on the solution of the inverse heat conduction problem. Thermal stresses are determined indirectly taking into account the measured temperature values at selected points on the outer wall of a pressure component. First, the transient temperature distribution in the entire pressure element is calculated, and then, thermal stresses are determined by the finite element method. Measured pressure changes are used to determine the stresses resultant from the internal pressure.

Findings

The obtained stresses and temperature in the thick-walled pipe are illustrated and compared with experimental data. Satisfactory agreement was found between computational and experimental results.

Originality/value

The method can be used in the monitoring of thermal and mechanical stresses during the boiler’s start-up and shut-down. Because the temperature distribution at each time level is determined, it can be applied as a thermal load during the structural analysis.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 10000