Search results

1 – 10 of over 2000
Article
Publication date: 1 February 1998

Shih‐Wen Hsiao

The variable porosity and thermal dispersion effects on natural convection in an inclined porous cavity are investigated numerically. The wall effect on porosity is approximated…

Abstract

The variable porosity and thermal dispersion effects on natural convection in an inclined porous cavity are investigated numerically. The wall effect on porosity is approximated by an exponential function and its effect on thermal dispersion is modeled in terms of a dispersive length. Numerical results show that both variable porosity and thermal dispersion effects increase the temperature gradient adjacent to the wall resulting in the enhancement of surface heat flux. These effects become important when the dimensionless particle diameter is increased. The variable porosity effect increases the fluid velocity near the wall, consequently enhancing convective heat transfer. The Prandtl number effect on the Nusselt number is small for Prandtl number greater than one, but increases as the Prandtl number decreases below one. The effect of thermal conductivity ratio on the Nusselt number is greater at low Rayleigh numbers where conduction heat transfer is predominant. A comparison between theoretical and experimental results shows that the calculated Nusselt numbers which take into account variable porosity and thermal dispersion effects have the best agreement with experimental data.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1999

G. Chen and H.A. Hadim

The objective of the present work was to perform a detailed numerical study of laminar forced convection in a three‐dimensional square duct packed with an isotropic granular…

Abstract

The objective of the present work was to perform a detailed numerical study of laminar forced convection in a three‐dimensional square duct packed with an isotropic granular material and saturated with a Newtonian fluid. Hydrodynamic and heat transfer results are reported for three different thermal boundary conditions. The flow in the porous medium was modeled using the semi‐empirical Brinkman‐Forchheimer‐extended Darcy model which also included the effects of variable porosity and thermal dispersion. Empirical models for variable porosity and thermal dispersion were determined based on existing three‐dimensional experimental measurements. Parametric studies were then conducted to investigate the effects of particle diameter, Reynolds number, Prandtl number and thermal conductivity ratio. The results showed that channeling phenomena and thermal dispersion effects are reduced considerably in a three‐dimensional duct compared with previously reported results for a two‐dimensional channel. It was found that the Reynolds number affects mainly the velocity gradient in the flow channeling region, while the particle diameter affects the width of the flow channeling region. As the Reynolds number increases or as the particle diameter decreases (i.e., when the inertia and thermal dispersion effects are enhanced), the Nusselt number increases. The effects of varing the Prandtl number on the magnitude of the Nusselt number were found to be more significant than those of the thermal conductivity ratio. Finally, the effects of varing the duct aspect ratio on the friction factor can be neglected for small particle diameter (Dp ≤ 0.01) or for high particle Reynolds number (Red ≥ 1000) due to the dominant bulk damping resistance from the porous matrix (Darcy term) or strong inertia effects (Forchheimer term), respectively.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 9 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 September 2018

Hojjat Saberinejad, Ali Keshavarz, Mohammad Payandehdoost, Mohammad Reza Azmoodeh and Alireza Batooei

The purpose of this paper is to numerically investigate the heat transfer enhancement in a tube filled partially with porous media under non-uniform porosity distribution and…

Abstract

Purpose

The purpose of this paper is to numerically investigate the heat transfer enhancement in a tube filled partially with porous media under non-uniform porosity distribution and thermal dispersion effects. The optimum porous thickness ratio [R_(r,Nu)] for the heat transfer enhancement under these conditions with and without considering required pumping power is evaluated.

Design/methodology/approach

The local thermal non-equilibrium and Darcy–Brinkman–Forchheimer models are used to simulated thermal and flow fields in porous region. The tube wall and flow regime are assumed to be isothermal and laminar, respectively. The impacts of Darcy number (Da = 10-6 - 10-1) and inertia parameter (F = 0 − 2) on the Nusselt number and friction factor are studied for non-uniform porosity distribution.

Findings

First, the effect of Nusselt number indicates that there are two different behaviors with respect to uniform and non-uniform porosity for partially and fully filled porous pipe. Second, variable porosity in porous region has significant influence on the optimum thickness ratio with considering required pumping power. For negligible inertia term, it depends on the Darcy number, whereas it is 0.9 at F > 1. Third, the plug flow assumption cannot be valid even at lower Darcy number under non-uniform porosity, while this assumption is applicable at Da < 10-3 for constant porosity distribution in porous region.

Originality/value

According to the best knowledge of authors, the optimum porous thickness ratio for the heat transfer enhancement considering the pressure loss effects under variable porosity has not reported up to now. Also the plug flow assumption in such physics is not discussed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2018

Safa Sabet, Moghtada Mobedi, Murat Barisik and Akira Nakayama

Fluid flow and heat transfer in a dual scale porous media is investigated to determine the interfacial convective heat transfer coefficient, numerically. The studied porous media…

Abstract

Purpose

Fluid flow and heat transfer in a dual scale porous media is investigated to determine the interfacial convective heat transfer coefficient, numerically. The studied porous media is a periodic dual scale porous media. It consists of the square rods which are permeable in an aligned arrangement. It is aimed to observe the enhancement of heat transfer through the porous media, which is important for thermal designers, by inserting intra-pores into the square rods. A special attention is given to the roles of size and number of intra-pores on the heat transfer enhancement through the dual scale porous media. The role of intra-pores on the pressure drop of air flow through porous media is also investigated by calculation and comparison of the friction coefficient.

Design/methodology/approach

To calculate the interfacial convective heat transfer coefficient, the governing equations which are continuity, momentum and energy equations are solved to determine velocity, pressure and temperature fields. As the dual scale porous structure is periodic, a representative elementary volume is generated, and the governing equations are numerically solved for the selected representative volume. By using the obtained velocity, pressure and temperature fields and using volume average definition, the volume average of aforementioned parameters is calculated and upscaled. Then, the interfacial convective heat transfer coefficient and the friction coefficient is numerically determined. The interparticle porosity is changed between 0.4 and 0.75, while the intraparticle varies between 0.2 and 0.75 to explore the effect of intra-pore on heat transfer enhancement.

Findings

The obtained Nusselt number values are compared with corresponding mono-scale porous media, and it is found that heat transfer through a porous medium can be enhanced threefold (without the increase of pressure drop) by inserting intraparticle pores in flow direction. For the porous media with low values of interparticle porosity (i.e. = 0.4), an optimum intraparticle porosity exists for which the highest heat transfer enhancement can be achieved. This value was found around 0.3 when the interparticle porosity was 0.4.

Research limitations/implications

The results of the study are interesting, especially from heat transfer enhancement point of view. However, further studies are required. For instance, studies should be performed to analyze the rate of the heat transfer enhancement for different shapes and arrangements of particles and a wider range of porosity. The other important parameter influencing heat transfer enhancement is the direction of pores. In the present study, the intraparticle pores are in flow direction; hence, the enhancement rate of heat transfer for different directions of pores must also be investigated.

Practical implications

The application of dual scale porous media is widely faced in daily life, nature and industry. The flowing of a fluid through a fiber mat, woven fiber bundles, multifilament textile fibers, oil filters and fractured porous media are some examples for the application of the heat and fluid flow through a dual scale porous media. Heat transfer enhancement.

Social implications

The enhancement of heat transfer is a significant topic that gained the attention of researchers in recent years. The importance of topic increases day-by-day because of further demands for downsizing of thermal equipment and heat recovery devices. The aim of thermal designers is to enhance heat transfer rate in thermal devices and to reduce their volume (and/or weight in some applications) by using lower mechanical power for cooling.

Originality/value

The present study might be the first study on determination of thermal transport properties of dual scale porous media yielded interesting results such as considerable enhancement of heat transfer by using proper intraparticle channels in a porous medium.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 June 2019

Amin Samimi Behbahan, Aminreza Noghrehabadi, C.P. Wong, Ioan Pop and Morteza Behbahani-Nejad

The purpose of this paper is to study thermal performance of metal foam/phase change materials composite under the influence of the enclosure aspect ratios (ratio of enclosure…

Abstract

Purpose

The purpose of this paper is to study thermal performance of metal foam/phase change materials composite under the influence of the enclosure aspect ratios (ratio of enclosure height: length). In this study, a compound metal foam/phase change material (PCM), which has been proved to be one of the most promising approaches for thermal conductivity promotion on PCMs, was used.

Design/methodology/approach

The PCM is considered initially at its melting temperature. The enclosure for all the cases has a constant volume with various aspect ratios. The left side of the enclosure is suddenly exposed to a thermal source having a constant heat flux, while the other three surfaces are kept thermally insulated. A two-dimensional numerical model considering the non-equilibrium thermal factor, non-Darcy effect and local natural convection was proposed. The coupling between velocity and pressure is solved using the SIMPLEC, and the Rhie and Chow interpolation is used to avoid the checker-board solutions for the pressure.

Findings

The effects of foam porosity and aspect ratio of the enclosure on the PCM’s melting time were investigated. The results indicated that enclosure aspect ratio plays a fundamental role in phase change of copper foam/PCM composites. For higher porosities, enclosures with bigger aspect ratios proved to led to optimal melting time. Besides, the best enclosure aspect ratio and foam porosity for a fixed-volume enclosure to have the shortest melting time are 2.1 and 91.66 per cent, respectively. However, for a specific amount of PCM inside a variable volume enclosure, the optimal melting time was for foam with ε = 95 per cent. The achieved results prove the great importance of selection of aspect ratio to benefit both conduction and convection heat transfer simultaneously.

Originality/value

The area of energy storage systems is original.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2017

Hasan Celik, Moghtada Mobedi, Oronzio Manca and Unver Ozkol

The purpose of this study is to determine interfacial convective heat transfer coefficient numerically, for a porous media consisting of square blocks in inline arrangement under…

Abstract

Purpose

The purpose of this study is to determine interfacial convective heat transfer coefficient numerically, for a porous media consisting of square blocks in inline arrangement under mixed convection heat transfer.

Design/methodology/approach

The continuity, momentum and energy equations are solved in dimensionless form for a representative elementary volume of porous media, numerically. The velocity and temperature fields for different values of porosity, Ri and Re numbers are obtained. The study is performed for the range of Ri number from 0.01 to 10, Re number from 100 to 500 and porosity value from 0.51 to 0.96. Based on the obtained results, the value of the interfacial convective heat transfer coefficient is calculated by using volume average method.

Findings

It was found that at low porosities (such as 0.51), the interfacial Nusselt number does not considerably change with Ri and Re numbers. However, for porous media with high Ri number and porosity (such as 10 and 0.51, respectively), secondary flows occur in the middle of the channel between rods improving heat transfer between solid and fluid, considerably. It is shown that the available correlations of interfacial heat transfer coefficient suggested for forced convection can be used for mixed convection for the porous media with low porosity (such as 0.51) or for the flow with low Ri number (such as 0.01).

Originality/value

To the best of the authors’ knowledge, there is no study on determination of interfacial convective heat transfer coefficient for mixed convection in porous media in literature. The present study might be the first study providing an accurate idea on the range of this important parameter, which will be useful particularly for researchers who study on mixed convection heat transfer in porous media, macroscopically.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 June 2023

Ailian Chang, Le Huang, Qian-Qian Li, Kambiz Vafai and Minglu Shao

The classical advection-dispersion equation (ADE) model cannot accurately depict the gas transport process in natural geological formations. This paper aims to study the behavior…

Abstract

Purpose

The classical advection-dispersion equation (ADE) model cannot accurately depict the gas transport process in natural geological formations. This paper aims to study the behavior of CO2 transport in fractal porous media by using an effective Hausdorff fractal derivative advection-dispersion equation (HFDADE) model.

Design/methodology/approach

Anomalous dispersion behaviors of CO2 transport are effectively characterized by the investigation of time and space Hausdorff derivatives on non-Euclidean fractal metrics. The numerical simulation has been performed with different Hausdorff fractal dimensions to reveal characteristics of the developed fractal ADE in fractal porous media. Numerical experiments focus on the influence of the time and space fractal dimensions on flow velocity and dispersion coefficient.

Findings

The physical mechanisms of parameters in the Hausdorff fractal derivative model are analyzed clearly. Numerical results demonstrate that the proposed model can well fit the history of gas production data and it can be a powerful technique for depicting the early arrival and long-tailed phenomenon by incorporating a fractal dimension.

Originality/value

To the best of the authors’ knowledge, first time these results are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 September 2019

Khalil Khanafer and K. Vafai

This study aims to investigate a critical review on the applications of fluid-structure interaction (FSI) in porous media.

Abstract

Purpose

This study aims to investigate a critical review on the applications of fluid-structure interaction (FSI) in porous media.

Design/methodology/approach

Transport phenomena in porous media are of continuing interest by many researchers in the literature because of its significant applications in engineering and biomedical sectors. Such applications include thermal management of high heat flux electronic devices, heat exchangers, thermal insulation in buildings, oil recovery, transport in biological tissues and tissue engineering. FSI is becoming an important tool in the design process to fully understand the interaction between fluids and structures.

Findings

This study is structured in three sections: the first part summarizes some important studies on the applications of porous medium and FSI in various engineering and biomedical applications. The second part focuses on the applications of FSI in porous media as related to hyperthermia. The third part of this review is allocated to the applications of FSI of convection flow and heat transfer in engineering systems filled with porous medium.

Research limitations/implications

To the best knowledge of the present authors, FSI analysis of turbulent flow in porous medium never been studied, and therefore, more attention should be given to this area in any future studies. Moreover, more studies should also be conducted on mixed convective flow and heat transfer in systems using porous medium and FSI.

Practical implications

The wall of the blood vessel is considered as a flexible multilayer porous medium, and therefore, rigid wall analysis is not accurate, and therefore, FSI should be implemented for accurate predictions of flow and hemodynamic stresses.

Social implications

The use of porous media theory in biomedical applications received a great attention by many investigators in the literature (Khanafer and Vafai, 2006a; Al-Amiri et al., 2014; Lasiello et al., 2016a, Lasiello et al., 2016b; Lasiello et al., 2015; Chung and Vafai, 2013; Mahjoob and Vafai, 2009; Yang and Vafai, 2008; Yang and Vafai, 2006; Ai and Vafai, 2006). A comprehensive review was conducted by Khanafer and Vafai (2006b) summarizing various studies associated with magnetic field imaging and drug delivery. The authors illustrated that the tortuosity and porosity had a profound effect on the diffusion process within the brain. AlAmiri et al. (2014) conducted a numerical study to investigate the effect of turbulent pulsatile flow and heating technique on the thermal distribution within the arterial wall. The results of that investigation illustrated that local heat flux variation along the bottom layer of the tumor was greater for the low-velocity condition. Yang and Vafai (2006) presented a comprehensive four-layer model to study low-density lipoprotein transport in the arterial wall coupled with a lumen (Figure 1). All the four layers (endothelium, intima, internal elastic lamina and media) were modeled as a homogenous porous medium.

Originality/value

Future studies on the applications of FSI in porous media are recommended in this review.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 February 2023

Sumit Kumar Mehta and Sukumar Pati

The purpose of this paper is to investigate computationally the hydrothermal characteristics for forced convective laminar flow of water through a channel with a top wavy wall and…

Abstract

Purpose

The purpose of this paper is to investigate computationally the hydrothermal characteristics for forced convective laminar flow of water through a channel with a top wavy wall and a flat bottom wall having metallic porous blocks.

Design/methodology/approach

The governing equations are solved computationally using a finite element method–based numerical solver COMSOL Multiphysics® for the following range of parameters: 10 ≤ Reynolds number (Re) ≤ 500 and 10–4 ≤ Darcy number (Da) ≤ 10–1.

Findings

The presence of porous blocks significantly influences the heat transfer rate, and the value of local Nusselt number increases with the increase in Da. The value of the average Nusselt number decreases with Da for the top wall and the same is enhanced for the bottom wall of the wavy channel with porous blocks (WCPB). The value of the average Nusselt number for WCPB is significantly higher than that of the wavy channel without porous block (WCWPB), plane channel without porous block (PCWPB) and plane channel with the porous block (PCPB) at higher Re. For PCPB, the performance factor (PF) is always higher than that of WCWPB and WCPB for Da = 10–4 and Da = 10–3. Also, PF for WCPB is higher than that of WCWPB for higher Re except for Da = 10–4. Further, the value of for WCPB is higher than that of PCPB at Da = 10–2 and 10–1 at Re = 500.

Practical implications

The current study is useful in designing efficient heat exchangers for process plants, solar collectors and aerospace applications.

Originality/value

The analysis of thermo-hydraulic characteristics for laminar flow through a channel with a top wavy wall and a flat bottom wall having metallic porous blocks have been analyzed for the first time. Further, a comparative assessment of the performance has been performed with a wavy channel without a porous block, a plane channel without a porous block and a plane channel with porous blocks.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 February 2017

Huey Tyng Cheong, S. Sivasankaran and M. Bhuvaneswari

The purpose of this paper is to study natural convective flow and heat transfer in a sinusoidally heated wavy porous cavity in the presence of internal heat generation or…

Abstract

Purpose

The purpose of this paper is to study natural convective flow and heat transfer in a sinusoidally heated wavy porous cavity in the presence of internal heat generation or absorption.

Design/methodology/approach

Sinusoidal heating is applied on the vertical left wall of the cavity, whereas the wavy right wall is cooled at a constant temperature. The top and bottom walls are taken to be adiabatic. The Darcy model is adopted for fluid flow through the porous medium in the cavity. The governing equations and boundary conditions are solved using the finite difference method over a range of amplitudes and number of undulations of the wavy wall, Darcy–Rayleigh numbers and internal heat generation/absorption parameters.

Findings

The results are presented in the form of streamlines, isotherms and Nusselt numbers for different values of right wall waviness, Darcy–Rayleigh number and internal heat generation parameter. The flow field and temperature distribution in the cavity are affected by the waviness of the right wall. The wavy nature of the cavity also enhances the heat transfer into the system. The heat transfer rate in the cavity decreases with an increase in the internal heat generation/absorption parameter.

Research limitations/implications

The present investigation is conducted for steady, two-dimensional natural convective flow in a wavy cavity filled with Darcy porous medium. The waviness of the right wall is described by the amplitude and number of undulations with a well-defined mathematical function. An extension of the present study with the effects of cavity inclination and aspect ratio will be the interest for future work.

Practical implications

The study might be useful for the design of solar collectors, room ventilation systems and electronic cooling systems.

Originality/value

This work examines the effects of sinusoidal heating on convective heat transfer in a wavy porous cavity in the presence of internal heat generation or absorption. The study might be useful for the design of solar collectors, room ventilation systems and electronic cooling systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 2000