Search results

1 – 10 of 652
Article
Publication date: 13 June 2008

Damjana Celcar, Harriet Meinander and Jelka Geršak

The paper aims to investigate thermal comfort properties, such as heat and moisture transmission through male business clothing systems, by using a sweating thermal manikin

2502

Abstract

Purpose

The paper aims to investigate thermal comfort properties, such as heat and moisture transmission through male business clothing systems, by using a sweating thermal manikin Coppelius that simulates heat and moisture production in a similar way to the human body and measures the influence of clothing on heat exchange in different environmental and sweating conditions.

Design/methodology/approach

Ten different combination of male business clothing systems were measured using the sweating manikin, under three environmental conditions (10°C/50 per cent RH, 25°C/50 per cent RH and −5°C), and at 0 and 50 gm−2 h−1 sweating levels, in order to evaluate the influence of environmental and sweating conditions on thermal comfort properties of clothing systems.

Findings

The results show how business clothing systems influence on the dry and evaporative heat loss between the manikin surface and environment in different environmental and sweating conditions.

Practical implications

When using sweating thermal manikin Coppelius, water vapour transmission (WVT) through and water condensation on the clothing can be determined simultaneously with the thermal insulation (It) of clothing system. Measured thermal comfort properties of clothing systems evaluated with a sweating thermal manikin can provide valuable information for the clothing industry by manufacturing/designing new clothing systems.

Originality/value

In this investigation, the heat and moisture transmission properties of male business clothing systems were measured in different environmental and sweating conditions. In the past few years, clothing materials containing microencapsulated phase‐change materials (PCMs) have appeared in outdoor garments, particularly sportswear; therefore, we decided to investigate the thermal comfort properties of different standard male business apparel, as well as male business clothing that contain PCMs used as liner and outerwear material.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 November 2015

Ming Fu, Wenguo Weng and Hongyong Yuan

– The purpose of this paper is to study the combined effects of moisture and radiation on thermal protective performance of protective clothing exposed to low level radiation.

Abstract

Purpose

The purpose of this paper is to study the combined effects of moisture and radiation on thermal protective performance of protective clothing exposed to low level radiation.

Design/methodology/approach

Using a sweating manikin, the effect of radiation and moisture on heat and moisture transfer was initially analyzed under the dry manikin with sweating rate of 100 g/(m2h) exposed to 2.5 kW/m2, and then studied at 200 and 300 g/(m2h) exposed to 2 and 3 kW/m2, respectively. Finally, the combined effects of thermal radiation and moisture were predicted by fitting the relationships among heat loss and wet skin surface temperature, with the sweating rate and radiation intensity.

Findings

The results show that the heat loss and the wet skin surface temperature are affected by the combined effects of moisture and radiation, with two distinctly different trends. Heat loss from the manikin is increasing with the sweating rate, and decreasing with thermal radiation intensity. However, the wet skin surface temperature has an opposite situation.

Originality/value

Two filling equations are given to present the relationships among heat loss and wet skin surface temperature, with the sweating rate and radiation intensity. With these two equations, the heat loss and the wet skin surface temperature when exposed to radiation can be predicted by only measuring the mean radiant and ambient temperatures and controlling the sweating rate.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 17 March 2020

Chang Xu, Shifei Shen, Ming Fu and Yayun Li

Bench scale and flame manikin tests are two typical methods to evaluate thermal protective performance (TPP) of fire protective clothing. However, flame manikin test is limited to…

Abstract

Purpose

Bench scale and flame manikin tests are two typical methods to evaluate thermal protective performance (TPP) of fire protective clothing. However, flame manikin test is limited to be widely used for its complication and high cost. The purpose of this paper is to develop a method to evaluate the thermal performance of protective clothing from the bench scale test results and garment parameters, which predicts the body burn injuries without conducting flame manikin tests.

Design/methodology/approach

Bench scale and flame manikin tests’ data were collected from the previous research literature and then statistical analysis was performed to quantitatively investigate the correlations between the two test methods. Equations were established to predict the TPP values accounting for the effects of entrapped air gap and thermal shrinkage. Fitting analysis was conducted to analyze the relationship between the predicted TPP values and total burn injury. Finally, a method to predict total burn injury from the TPP values was proposed and validated.

Findings

The results showed that when the TPP value was predicted with the effects of air gap and thermal shrinkage considered, there was an approximate linear relationship between the predicted TPP values and total burn injury from the manikin test. Therefore, the prediction model of burn injury was developed based on the correlation analysis and verified with a generally good accuracy.

Originality/value

This paper presented a new prediction method to evaluate the thermal performance of protective clothing, which saved significant time and cost compared to the conventional methods. It can provide useful information for burn injury prediction of protective clothing.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 February 1990

J. Fan and J.H. Keighley

This article introduces a new technique for the design and construction of manikins used for the assessment of thermal insulation clothing. In such a manikin, the skin is made of…

Abstract

This article introduces a new technique for the design and construction of manikins used for the assessment of thermal insulation clothing. In such a manikin, the skin is made of waterproof fabrics, and heated water circulates inside the body. This manikin is considerably cheaper to construct than any existing copper manikin and it can be easily used for routine tests for outdoor and military garments. Detailed considerations in the design and construction of such a fabric manikin are presented here.

Details

International Journal of Clothing Science and Technology, vol. 2 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 October 2008

Kai Yang, Ming‐Li Jiao, Yi‐Song Chen, Jun Li and Wei‐Yuan Zhang

The purpose of this paper is to explore the heat transfer and establish a heat transfer model of an extravehicular liquid cooling garment based on a thermal manikin covered with…

Abstract

Purpose

The purpose of this paper is to explore the heat transfer and establish a heat transfer model of an extravehicular liquid cooling garment based on a thermal manikin covered with soft simulated skin.

Design/methodology/approach

The thermal manikin applied in this study was a copper manikin, typical of which was its soft simulated skin – a newly thermoplastic elastomer material. Based on this novel thermal manikin, the heat transfer analysis of an extravehicular liquid cooling garment was performed. To satisfy the practical engineering application and simplify analysis, the hypotheses were proposed, and then the heat transfer model was established by heat transfer theory, in which the heat exchange equation of the liquid cooling garment with the thermal manikin and with the air layer, and the garment's total heat dissipating capacity were derived.

Findings

The verification experiments performed in a climatic chamber by a thermal manikin wearing a liquid cooling garment at different surface temperatures of the thermal manikin show that the modeling value fits well with the experimental value, and the heat transfer model of the liquid cooling garment has a high accuracy. Meanwhile, the relationship between the heat‐dissipating capacity of the liquid cooling garment and its design parameters – inlet temperature and liquid velocity – is suggested as being based on the heat transfer model.

Originality/value

The paper shows that it is an effective method to control the heat‐dissipating capacity of a liquid cooling garment by changing the inlet temperature to some degree, but not by changing the liquid velocity.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 June 2011

Joo‐Young Lee, Eun‐Sook Ko, Hyo‐Hyun Lee, Jae‐Young Kim and Jeong‐Wha Choi

The purpose of this paper is to examine differences between thermal insulation calculated by a global and a serial method using a thermal manikin, in comparison with human trials.

Abstract

Purpose

The purpose of this paper is to examine differences between thermal insulation calculated by a global and a serial method using a thermal manikin, in comparison with human trials.

Design/methodology/approach

A total of 150 single garments and 38 clothing ensembles were assessed using the manikin; 26 seasonal clothing ensembles were selected for human trials.

Findings

The results showed that total insulation of single garments was 16 percent higher in the serial method than in the global method. The difference was higher in garments with smaller covering area per unit garment mass (e.g. winter garments). For seasonal clothing ensembles, the serial values were 39.2 percent (0.18 clo) for spring/fall wear, 62.6 percent (0.15 clo) for summer wear and for winter wear 64.8 percent (0.69 clo) greater than the global values. The clothing insulation by the global method was systemically lower in all 26 seasonal ensembles than values by human trials, which suggests that the values by the global calculation can be more accurately corrected with human testing data.

Originality/value

The paper shows that values by the serial calculation were lower in spring/fall and summer ensembles but greater in winter garments than values collated by human trials. It suggests that the serial values had a lower validity when compared with thermal insulation values collated from human trials.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 November 2022

Hyunah Kim

This study examined the wear comfort and thermal insulation properties of Al2O3/graphite particle-imbedded sheath/core and dispersed fabrics via a thermal manikin experiment.

Abstract

Purpose

This study examined the wear comfort and thermal insulation properties of Al2O3/graphite particle-imbedded sheath/core and dispersed fabrics via a thermal manikin experiment.

Design/methodology/approach

Al2O3/graphite sheath/core and dispersed polyethylene terephthalate (PET) yarn (POY 120d/24f) were spun using a pilot melt bi-component conjugated spinning machine, which was texturized as 75d/24f on the belt-type texturing machine. The woven fabric specimens were made using nylon 70d/34f in the warp with three types of weft yarn: Al2O3/graphite sheath/core, dispersed and regular PET yarns. Thermal insulation properties were measured and compared in terms of the heat retention rate (I) by KES-F7 apparatus and the maximum surface temperature by light heat emission equipment, as verified by the emissivity of various fabric specimens by far-infrared ray experiment. In addition, this study examined the thermal insulation (Clo value) characteristics of the clothes made of Al2O3/graphite sheath/core and dispersed fabrics using a thermal manikin apparatus, which were compared with the properties of regular PET clothing.

Findings

The thermal insulation of the dispersed fabric was superior to that of the sheath/core fabric, which was tentatively attributed to the higher emissivity of the dispersed yarn with Al2O3/graphite particles distributed over the whole yarn cross-section than that from the core of the sheath/core yarn. This result for the clothing measured using a thermal manikin was consistent with the higher heat retention rate (I) and the maximum surface temperature of the dispersed fabric than that of the sheath/core fabric. In addition, the thermal insulation of the dispersed and sheath/core fabrics was superior to that of the regular PET fabric, which revealed that the Al2O3/graphite particles imbedded in the dispersed and sheath/core yarns exerted a greater effect on the heat storage and release characteristics compared to that of the TiO2 particles in regular PET yarn. The Clo values of the dispersed and sheath/core fabrics under the light-on condition were much higher than those under the light-off condition, and furthermore, the difference of the Clo value between the sheath/core and regular PET fabrics under light-on condition was approximately 1.7 times greater than that under the light-off condition. These results revealed that the far-infrared rays emitted from the Al2O3/graphite particles imbedded in the sheath/core and dispersed yarns enhance the heat storage and release characteristics from the fabric under the light-on condition, i.e. under the sunlight.

Originality/value

The previously examined thermal wear comfort properties of the various inorganic particle-imbedded fabrics were measured with the fabric state, not clothing, which could not provide objective data related to the actual wearing performance of clothing.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 May 1991

J. Fan and J.H. Keighley

The effects of body motion, clothing design and environmental conditions on the thermal insulation of clothing systems were investigated by using a newly developed fabric manikin

Abstract

The effects of body motion, clothing design and environmental conditions on the thermal insulation of clothing systems were investigated by using a newly developed fabric manikin. The manikin was covered with four typical clothing systems, and the changes of thermal insulation of these clothing systems and the heat lost from the clothed manikin were examined under various walking speeds (0–1.2 km/hr), wind velocities (0–2.2 m/s), and ambient temperature (—20°C–20°C) inside an environmental chamber. Out of this work, better understanding of the reduction of thermal insulation, owing to the combined effects of body motion and wind, are achieved. Also, the work showed the significant effect of ambient temperature on the effective clothing thermal insulation and the advantage of using aluminium foil in the construction of clothing for use in cold environments. Finally, the work revealed the fact that body motion can have a very significant effect on the clothing thermal insulation even though body activity is low. This explains why people, when they feel cold, like to increase their activity level in order to increase heat production rather than reduce their activity level to reduce the heat lost.

Details

International Journal of Clothing Science and Technology, vol. 3 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 29 May 2020

Jingxian Xu, Huijuan Liu, Yunyi Wang and Jun Li

This study aims to investigate the heat transfer mechanism of the uniforms used by people working in hot, humid and windy environments. Furthermore, the effectiveness of an…

Abstract

Purpose

This study aims to investigate the heat transfer mechanism of the uniforms used by people working in hot, humid and windy environments. Furthermore, the effectiveness of an opening structure added to the armpit of the uniforms in improving thermal comfort was comparatively examined.

Design/methodology/approach

A set of uniforms was tested with the opening at the armpit alternatively zipped or unzipped. Thermal manikin and human tests were performed in a climatic chamber simulating the specific environmental conditions, including wind speeds at four levels (0.15, 0.5, 2, 4 m/s) and relative humidities at two levels (50 and 85%). Static and dynamic thermal insulations of clothing (IT) were examined by the thermal manikin tests. The human bodies' thermal responses, including heart rates (HR), eardrum temperatures (Te), skin temperatures (Tsk) and subjective perceptions, were given by the human tests.

Findings

Special mechanisms of heat transfer in the specific uniforms used in tropical monsoon climates were revealed. Reductions on IT were caused by the movement of the human body and the environmental wind, and the empirical equations would underestimate this reduction. The opening at the armpit was able to prompt more heat transfer under dynamic condition, with reducing the IT by 11.8%, lowering the mean Tsk by 0.92°C, and significantly improving the subjective perceptions (p < 0.05). The heat exhaustion was alleviated with lowering the Te by 0.32°C.

Originality/value

This study managed to improve the thermal performance of uniforms for workers under unforgiving conditions. The evaluation and design methods introduced by this study provided practical guidance for similar products with strict dress codes and cost control requirements based on the findings from thorough product tests and analysis.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 December 2018

Zhongxiang Lei, Xiaoming Qian and Xianglong Zhang

The purpose of this paper is to assess the thermal protective performance of firefighter’s clothing by a sweating manikin in low-level radiation.

Abstract

Purpose

The purpose of this paper is to assess the thermal protective performance of firefighter’s clothing by a sweating manikin in low-level radiation.

Design/methodology/approach

A new method and a novel objective index based on measurements of the sweating thermal manikin are proposed to measure the thermal protection performance of firefighter’s clothing under low-level radiation exposure of 3.0 kW/m2. Finally, the effect of thermal insulation on thermal protective performance of firefighter’s clothing was analyzed.

Findings

The results reveal that the new index which used the changing rate of core temperature of the clothed manikin is a vital indicator of the thermal protection performance. Furthermore, the results demonstrated that there is a linear correlation between thermal protection performance of firefighter’s clothing and the thermal insulation.

Originality/value

A new method and a novel objective index are proposed to quantify the thermal protective performance of firefighter’s clothing in low-level radiation.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 652