Search results

1 – 10 of over 48000
Article
Publication date: 3 January 2017

Zhiyong Zeng, Xiaoliang Jin and Rongxiang Zhao

The model for digitally controlled three-phase pulse width modulation (PWM) boost rectifiers is a sampled data model, which is different from the continuous time domain models

Abstract

Purpose

The model for digitally controlled three-phase pulse width modulation (PWM) boost rectifiers is a sampled data model, which is different from the continuous time domain models presented in previous studies. The controller, which is tuned according to the model in continuous time domain and discretized by approximation methods, may exhibit some unpredictable performances and even result in unstable systems under some extreme situations. Consequently, a small-signal discrete-time model of digitally controlled three-phase PWM boost rectifier is required. The purpose of this paper is to provide a simple but accurate small-signal discrete-time model of digital controlled three-phase PWM boost rectifier, which explains the effect of the sampling period, modulator and time delays on system dynamic and improves the control performance.

Design/methodology/approach

Based on the Laplace domain analysis and the waveforms of up-down-count modulator, the small signal model of digital pulse width modulation (DPWM) in the Laplace domain is presented. With a combination of state-space average and a discrete-time modeling technique, a simplified large signal discrete time model is developed. With rotation transformation and feed-forward decoupling, the large-signal model is decoupled into a single input single output system with rotation transformation. Then, an integrated small signal model in the Laplace domain is constructed that included the time delay and modulation effect. Implementing the modified z-transform, a small-signal discrete-time model is derived from the integrated small signal model.

Findings

In a digital control system, besides the circuit parameters, the location of pole of open-loop transfer function is also related to system sampling time, affecting the system stability, and the time delay determines the location of the zero of open-loop transfer function, affecting the system dynamic. In addition to the circuit parameters discussed in previous literature, the right half plane (RHP) zero is also determined by the sampling period and the time delay. Furthermore, the corner frequency of the RHP zero is mainly determined by the sampling period.

Originality/value

The model developed in this paper, accounting for the effect of the sampling period, modulator and time delays on the system dynamic, give a sufficient insight into the behavior of the digitally controlled three-phase PWM rectifier. It can also explain the effect of sampling period and control delay time on system dynamic, accurately predict the system stability boundary and determine the oscillation frequency of the current loop in critical stable. The experimental results verify that the model is a simple and accurate control-oriented small-signal discrete-time model for the digitally controlled three-phase PWM boost rectifier.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 April 2020

Krishnaja Maturi and Susovon Samanta

The purpose of this paper is to derive the small-signal/canonical model derivation of the high-side active clamp forward converter (ACFC) with diode rectification for ideal and…

184

Abstract

Purpose

The purpose of this paper is to derive the small-signal/canonical model derivation of the high-side active clamp forward converter (ACFC) with diode rectification for ideal and with resistive parasitics. It also covers the analysis of ACFC small-signal model with resistive parasitics using computer-aided modeling software Personal Computer Simulation Program with Integrated Circuit Emphasis (PSPICE) 16.6. The effects of variation of system parameters on the ACFC’s state transfer functions and operations have been highlighted in this paper.

Design/methodology/approach

The large-signal model and small-signal model of the ACFC with diode rectification has been derived using AC small-signal modeling approach.

Findings

The operating point of the converter changes with the consideration of resistive parasitics compared with the ideal case. The response obtained from the hardware matches with the time domain response of the averaged model and switch model developed in PSPICE.

Research limitations/implications

This paper limits the study of ACFC small-signal behavior by using computer-aided design software PSPICE. The dead time of the converter is not considered because it is negligible when compared with the on and off time. The leakage inductance which plays a role in zero voltage switching of the ACFC switches is neglected in the analysis as it is very small compared to the magnetizing inductance. The switching losses are not considered in the modeling.

Practical implications

The mathematical computation of deriving the system transfer functions from canonical model is complex and time consuming.

Originality/value

The modeling with resistive parasitics improves the effectiveness of the equivalent model. Also, the analysis with computer-aided modeling software PSPICE gives reliable results in less time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 June 2021

Jincan Zhang, Min Liu, Jinchan Wang and Kun Xu

High-speed Indium Phosphide (InP) HBTs have been widely used to design high-speed analog, digital and mixed-signal integrated circuits. The purpose of this study is to propose a…

Abstract

Purpose

High-speed Indium Phosphide (InP) HBTs have been widely used to design high-speed analog, digital and mixed-signal integrated circuits. The purpose of this study is to propose a new parameter extraction procedure for determining an improved T-topology small-signal equivalent circuit of InP heterojunction bipolar transistors (HBTs).

Design/methodology/approach

The alternating current crowding effect is considered through adding the intrinsic base capacitance in the small-signal equivalent circuit. All of the circuit parameters are extracted directly without using any approximation.

Findings

The extraction technique is more easily understood and clearer than other extraction methods, as the equations are derived from the S-parameters by peeling peripheral elements from small-signal models to get reduced ones and extracting each equivalent-circuit parameter using each equation.

Originality/value

To validate the presented parameter extraction technology, an n-p-n emitter-up InP HBT was analyzed adopting the method. Excellent agreement between measured and modeled S-parameters is obtained up to 40 GHz.

Article
Publication date: 6 July 2015

Mohamed Rashed, Christian Klumpner and Greg Asher

The purpose of the paper is to introduce the dynamic phasor modelling (DPM) approach for stability investigation and control design of single-phase phase-locked loops (PLLs). The…

Abstract

Purpose

The purpose of the paper is to introduce the dynamic phasor modelling (DPM) approach for stability investigation and control design of single-phase phase-locked loops (PLLs). The aim is to identify the system instabilities not predicted using the existent analysis and design methods based on the simplified average model approach.

Design/methodology/approach

This paper starts by investigating the performance of three commonly used PLL schemes: the inverse park-PLL, the second-order generalised integrators (SOGI)-frequency-locked loop and the enhanced-PLL, designed using the simplified average model and will show that following this approach, there is a mismatch between their actual and desired transient performance. A new PLL design method is then proposed based on the DPM approach that allows the development of fourth-order DPM models. The small-signal eigenvalues analysis of the fourth-order DPM models is used to determine the control gains and the stability limits.

Findings

The DPM approach is proven to be useful for single-phase PLLs stability analysis and control parameters design. It has been successfully used to design the control parameters and to predict the PLL stability limits, which have been validated via simulation and experimental tests consisting of grid voltage sag, phase jump and frequency step change.

Originality/value

This paper has introduced the use of DPM approach for the purpose of single-phase PLL stability analysis and control design. The approach has enabled accurate control gains design and stability limits identification of single-phase PLLs.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2018

Rahis Kumar Yadav, Pankaj Pathak and R.M. Mehra

This paper aims to report small-signal parameter extraction and simulation of enhanced dual-channel dual-material gate AlGaN/GaN high electron mobility transistor (HEMT) for the…

Abstract

Purpose

This paper aims to report small-signal parameter extraction and simulation of enhanced dual-channel dual-material gate AlGaN/GaN high electron mobility transistor (HEMT) for the first time for the characterization of a device in microwave range of frequency.

Design/methodology/approach

For parameter extraction, a standard and well-known direct parameter extraction methodology is applied. Extrinsic elements of small-signal circuit model are extracted from measured S-parameters obtained using pinch-off cold field effect transistor (FET) biasing in the first step at a low frequency range and at a higher frequency range in the second step to ensure higher extraction accuracy. Intrinsic elements are extracted from intrinsic Y-parameters that are obtained after de-embedding all the extrinsic parasitic elements of the device. Figure of merits of radio frequency are also derived from the measured results and S-parameters of the proposed device.

Findings

Small signal parameters of the proposed device circuit model are extracted using the standard direct parameter extraction technique. Analysis of microwave figure of merits for device include maximum oscillation frequency, cut-off frequency, current gain, transducer power gain, available power gain, maximum stable gain, transconductance, drain conductance, stern stability factor and time delay.

Practical implications

The paper bridges the gaps between theory and experimental practices by validating extracted results with reported results of structurally matching devices.

Originality/value

An enhanced device structure investigated for small signal parameters incorporates field plate over dual metal engineered gate to provide better electric field uniformity, effective suppression of short channel effect, reduction in current collapse, improvement in carrier transport efficiency and enhancement in drain current capabilities.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2006

D. Roger, E. Napieralska‐Juszczak and A. Henneton

The paper gives a new measurement method of the parameters characterising the magnetic laminations for broadband low‐level signals defined at any operational point.

Abstract

Purpose

The paper gives a new measurement method of the parameters characterising the magnetic laminations for broadband low‐level signals defined at any operational point.

Design/methodology/approach

High frequency phenomena machines fed by PWM inverters are related to low‐level signals corresponding to minor hysteresis loops around the instantaneous working point, which moves on the main loop at the basic frequency. The minor loops are assimilated to ellipses, which are characterised by only two parameters: the incremental magnetic permeability (μ) and the electric conductivity (σ).

Findings

For small signals high frequency field components, the laminated steel behaviour can be described by two local parameters (μ, σ) and skin effect. The values of μ and σ do not depend on frequency up to 1 MHz, but only on the operating point.

Research limitations/implications

The proposed broadband characterisation should be associated with a Priesach model that defines the operating point for computer simulation of high frequency phenomena.

Practical implications

The broadband characterisation of magnetic laminations is useful for studying the behaviour of the windings of the PWM‐fed machines.

Originality/value

Broadband measurements are now possible on small magnetic steel lamination samples.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 1987

Michael GAITAN and Isaak D. MAYERGOYZ

The development of a numerical implementation of the small signal response of the MOS (Metal‐Oxide‐Silicon) capacitor using time perturbation analysis is discussed. The effects of…

Abstract

The development of a numerical implementation of the small signal response of the MOS (Metal‐Oxide‐Silicon) capacitor using time perturbation analysis is discussed. The effects of nonconstant doping profiles and interface and bulk traps are included. The model uses Fermi‐Dirac statistics to describe the occupancy of the interface and bulk traps. The oxide region is considered to have no mobile carriers and any fixed oxide charge distribution is modeled as a charge sheet at the Si‐SiO2 interface. This technique can be used to find the small signal response of the device from the static solution.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 6 no. 2
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 14 February 2022

Erdem Ilten

In recent years, use of sensorless control methods for electrical motor-based variable speed drive systems has been increasing rapidly to compensate the increasing costs in…

Abstract

Purpose

In recent years, use of sensorless control methods for electrical motor-based variable speed drive systems has been increasing rapidly to compensate the increasing costs in industrial systems. Also, use of induction motors is popular for a long time to decrease the cost of these industrial systems. This study aims to design an effective controller to improve the sensorless speed control performance of induction motor. To achieve this, a conformable fractional order proportional integral (CFOPI) controller is designed.

Design/methodology/approach

The system is modeled based on small signal analysis by using the input–output data, experimentally. To do this, system identification toolbox of Matlab is used. The proposed controller is established on conformable fractional integral approach proposed by Khalil et al. (2014). CFOPI controller coefficients are optimized using particle swarm optimization method on the created small signal-based simulation model of the system to minimize the integral time absolute error. To prove the success of the proposed method, a traditional fractional order proportional integral (TFOPI) controller is tested under the same experimental system with the CFOPI controller.

Findings

TFOPI and CFOPI controllers are tested with the optimum parameters. Reference and actual speed trends are obtained for both methods. In induction motor start-up test, settling-times are measured as 8.73 and 8.44 s and steady-state oscillations are 2.66% and 0% (almost) for TFOPI and CFOPI controllers, respectively. In variable referenced speed tracking test, CFOPI performs well at all speed levels, while TFOPI fails to reach the reference speed at most speed levels.

Practical implications

Proposed CFOPI control method can be easily implemented in industrial systems, thanks to its simple algorithm. digital signal peripheral interface controller (dsPIC) based driver circuit with designed CFOPI controller used in this study can be applied directly to industrial systems such as elevators, conveyors, cranes and drills. Moreover, it can improve the performance of induction motor-based variable speed drive systems.

Originality/value

The proposed method provides robust performance for induction motor used in control systems. Additionally, it does this by using less complex algorithm written on the processors according to the traditional fractional order controllers.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 June 2022

Rajini V. and Margaret Amutha W.

The purpose of this paper is to carry out a detailed analysis of two port converter fed by Solar and wind sources during different operational modes by small signal modelling. The…

Abstract

Purpose

The purpose of this paper is to carry out a detailed analysis of two port converter fed by Solar and wind sources during different operational modes by small signal modelling. The converter is fully characterized and simulated using Matlab/Simulink. The voltage and current waveforms along with their corresponding expressions describing the converter operation are presented in detail. Then the DC-averaged equivalent topology is derived using circuit averaging technique. A complete derivation of the power stage transfer functions relevant to the capacitor voltage loop, such as capacitor voltage to solar voltage and inductor current to wind input voltage is obtained.

Design/methodology/approach

Stability analysis is used to analyze the small deviations around the steady-state operating point which helps in modeling the closed loop converter parameters. This paper presents the analysis, modeling and control of two port Cuk-buck converter topology.

Findings

Based on the results, a control strategy is designed to manage the energy flow within the system. A lab-level prototype for Cuk-buck converter with PWM controller is implemented and tested under various input conditions to study the performance of the converter during seasonal changes. The simulation and experimental results showed that effective operation and control strategy of the hybrid power supply system managed to be achieved alongside its feasible outputs.

Practical implications

This analysis can be extended to all power electronic converters and will be useful for the design of controllers.

Social implications

An appropriate control design plays a key role in enhancing the overall performance of the system. Hence, this paper is intended to present in detail the small signal modeling of the Cuk-buck converter along with the control design for all the switching modes.

Originality/value

Though this type of converter topology has been discussed widely in literature, very scarce literature is available related to modeling and control design of the converter. A state-space averaging model of the converter followed by a type-II compensator design is described, and prototype design and experimental results are also presented.

Article
Publication date: 11 May 2010

Veran V. Vasić, Darko P. Marčetić, Slobodan N. Vukosavić and Đura V. Oros

The purpose of this paper is to propose an analytical method for prediction of self‐sustained oscillations that might happen during low‐cost induction motor drive application…

Abstract

Purpose

The purpose of this paper is to propose an analytical method for prediction of self‐sustained oscillations that might happen during low‐cost induction motor drive application. This forecast is needed to avoid unwanted oscillations that can be encountered for in fan, compressor and pump drives utilizing open‐loop frequency‐controlled three‐phase induction motor drives.

Design/methodology/approach

The paper presents the model of the induction motor drive system that includes inverter switches dead‐time and allows discontinuous current of front‐end rectifier. Stability analysis of proposed model was performed by tracing the eigenvalues of the overall system matrix.

Findings

Discontinuous rectifier current at light loads and the dead‐time of the inverter switches are the main sources of undesired low‐frequency self‐sustained speed oscillations in open‐loop controlled induction motor drives. The evaluated risk prediction is a function of drive and motor parameters and load level.

Originality/value

The proposed induction motor drive system model highlights the direct connection between the self‐sustained speed oscillations and the system parameters like inverter dead time, dc capacitor values, motor parameters and motor load level. Good accuracy of instability prediction is verified by dynamic simulation and by extensive experimentation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 48000