Search results

1 – 10 of 901
Article
Publication date: 10 November 2021

Alireza Goudarzian

Control-signal-to-output-voltage transfer function of the conventional boost converter has at least one right-half plane zero (RHPZ) in the continuous conduction mode which can…

Abstract

Purpose

Control-signal-to-output-voltage transfer function of the conventional boost converter has at least one right-half plane zero (RHPZ) in the continuous conduction mode which can restrict the open-loop bandwidth of the converter. This problem can complicate the control design for the load voltage regulation and conversely, impact on the stability of the closed-loop system. To remove this positive zero and improve the dynamic performance, this paper aims to suggest a novel boost topology with a step-up voltage gain by developing the circuit diagram of a conventional boost converter.

Design/methodology/approach

Using a transformer, two different pathways are provided for a classical boost circuit. Hence, the effect of the RHPZ can be easily canceled and the voltage gain can be enhanced which provides conditions for achieving a smaller working duty cycle and reducing the voltage stress of the power switch. Using this technique makes it possible to achieve a good dynamic response compared to the classical boost converter.

Findings

The observations show that the phase margin of the proposed boost converter can be adequately improved, its bandwidth is largely increased, due to its minimum-phase structure through RHPZ cancellation. It is suitable for fast dynamic response applications such as micro-inverters and fuel cells.

Originality/value

The introduced method is analytically studied via determining the state-space model and necessary criteria are obtained to achieve a minimum-phase structure. Practical observations of a constructed prototype for the voltage conversion from 24 V to 100 V and various load conditions are shown.

Article
Publication date: 29 July 2014

Marcus Assarlind and Lise Aaboen

The purpose of this paper is to identify forces (in the form of converters and inhibitors) of Lean Six Sigma adoption by studying the gradual adoption of Lean Six Sigma in a…

1390

Abstract

Purpose

The purpose of this paper is to identify forces (in the form of converters and inhibitors) of Lean Six Sigma adoption by studying the gradual adoption of Lean Six Sigma in a medium-sized Swedish manufacturing company. The paper suggests how the converters and inhibitors interact toward increased maturity of the adoption and, in this case, stagnation thereof.

Design/methodology/approach

Thirteen interviews were recorded and analyzed to identify converters that were moving the process forward or backward, as well as inhibitors that caused it to linger.

Findings

It was discovered that activities that had initially moved the process forward were not sufficient to move it beyond its current point. However, an increased knowledge of Lean Six Sigma throughout the organization now prevents the process from moving in the opposite direction. In this medium-sized Swedish manufacturing company, Lean Six Sigma becomes a framework for thought and communication during Lean work.

Research limitations/implications

The study benefited from considering forces pushing the process forward as well as backward. Thus, the authors suggest that future studies will benefit from focusing beyond critical success factors that may at times are static in nature. As a limitation, for discussions about the past, the memories of interviewees, generally, may have a tendency to be biased.

Originality/value

The paper contributes knowledge of Lean Six Sigma adoptions and how they may attain greater future success by reporting on difficulties and setbacks in the current gradual adoption process in a chosen company.

Details

International Journal of Lean Six Sigma, vol. 5 no. 3
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 20 July 2022

Hakan Koseni and Ali Bekir Yildiz

This paper aims to propose an efficient model for analysis of power electronic circuits with integrated magnetic components.

Abstract

Purpose

This paper aims to propose an efficient model for analysis of power electronic circuits with integrated magnetic components.

Design/methodology/approach

The inductance modeling technique is used as the traditional method for analyzing magnetic components. This model is simple and enough to generate for individual components, that is, an inductor and a transformer. However, it becomes difficult to realize this model for the integrated magnetic structures. This paper shows an appropriate model for individual magnetic components as well as integrated magnetic components and its application to magnetically coupled DC–DC converters. Gyrator–capacitor (G–C) modeling offers a unified, reasonable way of understanding the magnetic components commonly met with in power electronics and the other disciplines.

Findings

G–C model allows any electrical and magnetic circuit to be simultaneously simulated with circuit simulators. In this regard, this paper gives a complete simulation model and analysis as an illustrative example. There is no limitation of this paper or future works. The proposed G–C model can be applied to all power electronic circuits having integrated magnetic components.

Originality/value

In the proposed model, the magnetic circuit is converted to a pure electric circuit with capacitors and controlled sources; every winding is replaced with a pair of current controlled voltage sources, namely, a gyrator.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 June 2020

Ruchi Rashmi and Shweta Jagtap

With the advancement of technology, size, cost, and losses of the switched mode power supply (SMPS) have been decreasing. However, due to the high frequency switching, design of…

Abstract

Purpose

With the advancement of technology, size, cost, and losses of the switched mode power supply (SMPS) have been decreasing. However, due to the high frequency switching, design of magnetic drives and isolation circuits are becoming a crucial factor in SMPS. This paper presents design criteria, procedure and implementation of AC-DC half bridge (HB) converter with lower cost, smaller size and lower voltage stress on the power switch.

Design/Methodology/approach

The HB converter is designed in a symmetrical mode with a series coupling capacitor. Isolated power supplies are used for the converter and control circuit. Further, a transformer based isolated gate driver is used to drive both MOSFETs. The control IC works in voltage control mode to regulate voltage by controlling the duty cycle of the MOSFETs.

Findings

Control characteristics and performance of the HB converter is simulated using the MATLAB software and prototype of 170 W HB converter is built to validate the analytical results under variable load current and source voltage. The power quality and variation of load voltage at 2 A, 5 A, 7 A are reported.

Originality/value

This paper presents the design of a low-cost HB converter in a symmetrical mode which saves the additional cost of symmetric correction circuit normally required in asymmetrical mode design. This paper also focuses on the selection of primary and secondary side switch, series coupling capacitor, commuting diode, isolated drive and charge equalizer resistor.

Details

World Journal of Engineering, vol. 17 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 February 2024

Alireza Goudarzian and Rohallah Pourbagher

Conventional isolated dc–dc converters offer an efficient solution for performing voltage conversion with a large improved voltage gain. However, the small-signal analysis of…

25

Abstract

Purpose

Conventional isolated dc–dc converters offer an efficient solution for performing voltage conversion with a large improved voltage gain. However, the small-signal analysis of these converters shows that a right-half-plane (RHP) zero appears in their control-to-output transfer function, exhibiting a nonminimum-phase stability. This RHP zero can limit the frequency response and dynamic specifications of the converters; therefore, the output voltage response is sluggish. To overcome these problems, the purpose of this study is to analyze, model and design a new isolated forward single-ended primary-inductor converter (IFSEPIC) through RHP zero alleviation.

Design/methodology/approach

At first, the normal operation of the suggested IFSEPIC is studied. Then, its average model and control-to-output transfer function are derived. Based on the obtained model and Routh–Hurwitz criterion, the components are suitably designed for the proposed IFSEPIC, such that the derived dynamic model can eliminate the RHP zero.

Findings

The advantages of the proposed IFSEPIC can be summarized as: This converter can provide conditions to achieve fast dynamic behavior and minimum-phase stability, owing to the RHP zero cancellation; with respect to conventional isolated converters, a larger gain can be realized using the proposed topology; thus, it is possible to attain a smaller operating duty cycle; for conventional isolated converters, transformer core saturation is a major concern, owing to a large magnetizing current. However, the average value of the magnetizing current becomes zero for the proposed IFSEPIC, thereby avoiding core saturation, particularly at high frequencies; and the input current of the proposed converter is continuous, reducing input current ripple.

Originality/value

The key benefits of the proposed IFSEPIC are shown via comparisons. To validate the design method and theoretical findings, a practical implementation is presented.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 30 March 2010

Chun‐Fei Hsu, Shuen‐Liang Wang, Ming‐Chia Li and Chih‐Min Lin

The DC‐DC converters which convert one level of electrical voltage to the desired level are widely used in many electrical peripherals. During the past two decade, many different…

Abstract

Purpose

The DC‐DC converters which convert one level of electrical voltage to the desired level are widely used in many electrical peripherals. During the past two decade, many different control laws have been developed. The proportional‐integral (PI) control and sliding‐mode control have been carried out for the DC‐DC converters since they are simple to implement and easy to design. However, its performance using PI control and sliding‐mode control is obviously quite limited. The purpose of this paper is to a self‐tuning nonlinear function control (STNFC) propose for the DC‐DC converters. The adaptation laws of the proposed STNFC system are derived in the sense of Lyapunov function, thus not only the controller parameters can be online tuned itself, but also the system's stability can be guaranteed.

Design/methodology/approach

In general, the accurate mathematical models of the DC‐DC converters are difficult to derive. This paper proposes a model‐free STNFC design method. Since the proposed STNFC uses a simple fuzzy system with three fuzzy rules base to implement the control law, the computational loading of the fuzzy inference mechanism is slight. So the proposed STNFC system is suitable for the real‐time practical applications. The controller parameters of the proposed STNFC system can online tune in the Lyapunov sense, thus the stability of closed‐loop system can be guaranteed.

Findings

The proposed STNFC system is applied to a DC‐DC converter based on a field‐programmable gate array chip. The experimental results are provided to demonstrate the proposed STNFC system can cope with the input voltage and load resistance variations to ensure the stability while providing fast transient response.

Originality/value

The proposed STNFC approach is interesting for the design of an intelligent control scheme. The main contributions of this paper are: the successful development of STNFC system without heavy computational loading. The parameter‐learning algorithm is design based on the Lyapunov stability theorem to guarantee the system stability; the successful applications of the STNFC system to control the forward DC‐DC converter. And, the proposed STNFC methodology can be easily extended to other DC‐DC converters.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 3 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 16 April 2020

Krishnaja Maturi and Susovon Samanta

The purpose of this paper is to derive the small-signal/canonical model derivation of the high-side active clamp forward converter (ACFC) with diode rectification for ideal and…

179

Abstract

Purpose

The purpose of this paper is to derive the small-signal/canonical model derivation of the high-side active clamp forward converter (ACFC) with diode rectification for ideal and with resistive parasitics. It also covers the analysis of ACFC small-signal model with resistive parasitics using computer-aided modeling software Personal Computer Simulation Program with Integrated Circuit Emphasis (PSPICE) 16.6. The effects of variation of system parameters on the ACFC’s state transfer functions and operations have been highlighted in this paper.

Design/methodology/approach

The large-signal model and small-signal model of the ACFC with diode rectification has been derived using AC small-signal modeling approach.

Findings

The operating point of the converter changes with the consideration of resistive parasitics compared with the ideal case. The response obtained from the hardware matches with the time domain response of the averaged model and switch model developed in PSPICE.

Research limitations/implications

This paper limits the study of ACFC small-signal behavior by using computer-aided design software PSPICE. The dead time of the converter is not considered because it is negligible when compared with the on and off time. The leakage inductance which plays a role in zero voltage switching of the ACFC switches is neglected in the analysis as it is very small compared to the magnetizing inductance. The switching losses are not considered in the modeling.

Practical implications

The mathematical computation of deriving the system transfer functions from canonical model is complex and time consuming.

Originality/value

The modeling with resistive parasitics improves the effectiveness of the equivalent model. Also, the analysis with computer-aided modeling software PSPICE gives reliable results in less time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 October 2006

İres İskender, Yıldürüm Üçtug˘ and H. Bülent Ertan

To derive an analytical model for a dc‐ac‐dc parallel resonant converter operating in lagging power factor mode based on the steady‐state operation conditions and considering the…

Abstract

Purpose

To derive an analytical model for a dc‐ac‐dc parallel resonant converter operating in lagging power factor mode based on the steady‐state operation conditions and considering the effects of a high‐frequency transformer.

Design/methodology/approach

A range of published works relevant to dc‐ac‐dc converters and their control methods based on pulse‐width‐modulation technique are evaluated and their limitations in output measurement of higher output voltage converters are indicated. The circuit diagram of the converter is described and the general mathematical model of the system is obtained by deriving and combining the mathematical models of the different converter blocks existing in the system. The derived mathematical model is used to study the steady‐state and transient performance of the converter. The deriving procedure of the analytical model for a parallel resonant converter is extensively given and the analytical model obtained is verified by simulation results achieved using MATLAB/SIMULINK and the program written by the authors.

Findings

The paper suggests an analytical model for dc‐ac‐dc parallel resonant converters. The model can be used in the output voltage estimation of a converter in terms of its phase‐shift angle and the dc‐link voltage.

Research limitations/implications

The resources in the library of the authors' university and also the English resources relative to dc‐ac‐dc converters reachable through the internet were researched.

Practical implications

The analytical model suggested can be used in estimating the output voltage of the converters used in high‐voltage applications or where there are difficulties in employing sensors in measurement of the output voltage due to high price or implementation problems.

Originality/value

The originality of the paper is to present an analytical model for dc‐ac‐dc parallel resonant converters. Using this model makes it possible to estimate the output voltage of the converter using the dc‐link voltage and the phase‐shift angle. The proposed model provides researchers to regulate the output voltage of the converters using feed‐forward control technique.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

Grzegorz Iwanski, Piotr Pura, Tomasz Łuszczyk and Mateusz Szypulski

Doubly fed induction generator (DFIG) is widely used in wind energy conversion systems and it can operate with other primary movers. The purpose of this paper is to focus on the…

Abstract

Purpose

Doubly fed induction generator (DFIG) is widely used in wind energy conversion systems and it can operate with other primary movers. The purpose of this paper is to focus on the standalone operation of DFIG which may expand the area of possible applications and increase capabilities of the generation system in terms of power quality.

Design/methodology/approach

Synthesis of the control method was preceded by analysis of mathematical model of the machine. The control method based on the negative sequence and high harmonics extraction has been developed and verified in the laboratory unit. Control of the fundamental frequency component uses neither rotor speed nor position sensors.

Findings

The original method allows to compensate negative sequence and high harmonics of the generated voltage. At the same time, due to the active filtering capability of the grid side converter, the stator phase current shape is close to sine wave. Thus, it is seen by the machine as a linear load, what eliminates the electromagnetic torque ripples.

Practical implications

The system and control method can be applied in variable speed generation systems, e.g. wind turbines or diesel engines operating in the standalone mode.

Originality/value

Although the selective compensation of negative sequence and harmonics are known in the literature, until now the methods have been verified for the system with a rotor position sensor. Moreover, the stator current feed-forward improving the transient properties, as well as results of transient states caused by the load step change, have not been proposed in publications.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 March 2011

Arash Abbasalizadeh Boora, Firuz Zare and Arindam Ghosh

Multi‐level diode‐clamped inverters have the challenge of capacitor voltage balancing when the number of DC‐link capacitors is three or more. On the other hand, asymmetrical…

Abstract

Purpose

Multi‐level diode‐clamped inverters have the challenge of capacitor voltage balancing when the number of DC‐link capacitors is three or more. On the other hand, asymmetrical DC‐link voltage sources have been applied to increase the number of voltage levels without increasing the number of switches. The purpose of this paper is to show that an appropriate multi‐output DC‐DC converter can resolve the problem of capacitor voltage balancing and utilize the asymmetrical DC‐link voltages advantages.

Design/methodology/approach

A family of multi‐output DC‐DC converters is presented in this paper. The application of these converters is to convert the output voltage of a photovoltaic (PV) panel to regulate DC‐link voltages of an asymmetrical four‐level diode‐clamped inverter utilized for domestic applications. To verify the versatility of the presented topology, simulations have been directed for different situations and results are presented. Some related experiments have been developed to examine the capabilities of the proposed converters.

Findings

The three‐output voltage‐sharing converters presented in this paper have been mathematically analysed and proven to be appropriate to improve the quality of the residential application of PV by means of four‐level asymmetrical diode‐clamped inverter supplying highly resistive loads.

Originality/value

This paper shows that an appropriate multi‐output DC‐DC converter can resolve the problem of capacitor voltage balancing and utilize the asymmetrical DC‐link voltages advantages and that there is a possibility of operation at high‐modulation index despite reference voltage magnitude and power factor variations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 901