Search results

1 – 10 of 826
Article
Publication date: 12 August 2022

Jayaraman Kathirvelan

The purpose of this paper is to deal with an identification of a novel ink-jet printing sensor fabrication technology for fabricating flexible carbon heaters of macro and micro…

Abstract

Purpose

The purpose of this paper is to deal with an identification of a novel ink-jet printing sensor fabrication technology for fabricating flexible carbon heaters of macro and micro sizes, carbon interdigitated (IDT) electrodes and silver IDT electrodes. The technology involved in the proposed ink-jet printing method and materials used for the formulation of homemade nano-conductive inks (digital inks) are discussed in detail. The ink-jet printed flexible carbon heaters of different sizes (macro and micro) and carbon IDT electrodes and flexible silver IDT electrodes can be used as the flexible sensing layers in electrochemical gas sensors for sensitive and selective gas sensing applications. The characterization of ink-jet printed carbon heaters on Kapton substrate and its results are discussed. Similarly, the results of formulation of silver nano-conductive ink and printing of silver IDT electrodes on Kapton and its characterization are reported here for the first time.

Design/methodology/approach

Flexible carbon heaters of different sizes (macro and micro), carbon micro-IDT electrodes and silver IDT electrodes patterns were developed using AutoCAD 2D and printed on the Kapton (polyimide sheet) flexible substrate using the home-made nano-conductive inks with the help of EpsonT60 commercial piezo-head-based drop-on demand technology printer with standard printing options.

Findings

The proposed novel method is able to print heater patterns and IDT electrode patterns of approximately 12 µm and approximately 1 µm thickness, respectively, on flexible substrate using the home-made nano-conductive inks of carbon and silver by using a commercial low-cost printer. The home-made nano-conductive inks can be re-used for multiple prints up to six months shelf life. The resistance of the carbon heater was measured as 88 O under normal atmospheric condition. The novel flexible carbon heater was tested for its functionality and found to be satisfactory. The resistance of the silver IDT flexible electrodes was measured as 9.5 O which is better than the earlier works carried out in this paper.

Research limitations/implications

The main challenge is associated with cleaning of printing ink ejection system in the existing commercial printers. The customization of the existing printer in the near future can minimize the printing challenges.

Practical implications

The novel ink-jet printing technology proposed in this work is cost-effective, capable of achieving bulk production of flexible sensor elements, and consumes the least device fabrication time and high material yielding. The printing can be done with commercial piezo-head-based ink-jet printers with custom-prepared nano-conductive inks. There is a huge market potential for this paper.

Originality/value

Both the carbon heaters and silver IDT electrodes were printed on Kapton flexible substrate by using the commercial printer for the first time. The paper is promising the revolution in flexible low-cost sensor fabrication for mass production, and it is an alternate for thin film and thick sensor fabrication methods. The future of sensor fabrication technology will be the ink-jet printing method. In this paper, the research developments of flexible carbon heaters and flexible silver IDT electrodes for the time are reported. The characterization of carbon heaters and silver IDT electrodes were carried out and confirmed that the results are favourable for gas sensor applications.

Article
Publication date: 1 November 2021

Chenfei Zhao, Jun Wang and Lini Lu

In flexible electronics applications, organic inks are mostly used for inkjet printing. Three-dimensional (3 D) printing technology has the advantages of low cost, high speed and…

Abstract

Purpose

In flexible electronics applications, organic inks are mostly used for inkjet printing. Three-dimensional (3 D) printing technology has the advantages of low cost, high speed and good precision in modern electronic printing. The purpose of this study is to solve the high cost of traditional printing and the pollution emissions of organic ink. It is necessary to develop a water-based conductive ink that is easily degradable and can be 3 D printed. A nano-silver ink printed circuit pattern with high precision, high conductivity and good mechanical properties is a promising strategy.

Design/methodology/approach

The researched nano-silver conductive ink is mainly composed of silver nanoparticles and resin. The effect of adding methyl cellulose on the ink was also explored. A simple 3 D circuit pattern was printed on photographic paper. The line width, line length, line thickness and conductivity of the printed circuit were tested. The influence of sintering temperature and sintering time on pattern resistivity was studied. The relationship between circuit pattern bending performance and electrical conductivity is analyzed.

Findings

The experimental results show that the ink has the characteristics of low silver content and good environmental protection effect. The printing feasibility of 3 D printing circuit patterns on paper substrates was confirmed. The best printing temperature is 160°C–180°C, and the best sintering time is 30 min. The circuit pattern can be folded 120°, and the cycle is folded more than 60 times. The minimum resistivity of the circuit pattern is 6.07 µΩ·cm. Methyl cellulose can control the viscosity of the ink. The mechanical properties of the pattern have been improved. The printing method of 3 D printing can significantly reduce the sintering time and temperature of the conductive ink. These findings may provide innovation for the flexible electronics industry and pave the way for alternatives to cost-effective solutions.

Originality/value

In this study, direct ink writing technology was used to print circuit patterns on paper substrates. This process is simple and convenient and can control the thickness of the ink layer. The ink material is nonpolluting to the environment. Nano-silver ink has suitable viscosity and pH value. It can meet the requirements of pneumatic 3 D printers. The method has the characteristics of simple process, fast forming, low cost and high environmental friendliness.

Details

Rapid Prototyping Journal, vol. 28 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 May 2017

Peter Lukacs, Alena Pietrikova and Pavol Cabuk

The purpose of this paper is to find optimal sintering conditions of silver-based nano-inks for achieving the high electrical conductivity of the deposited layers applied on…

Abstract

Purpose

The purpose of this paper is to find optimal sintering conditions of silver-based nano-inks for achieving the high electrical conductivity of the deposited layers applied on polyimide foils as well as the influence of ageing on the electrical conductivity. Therefore, the investigation in the field of silver layers deposited by inkjet printing technology is presented in this paper.

Design/methodology/approach

The four-point resistance measurements were realized for a detailed and precise analysis of the resistance of two different silver layers under different sintering conditions depending on the type of nano-ink varied about the recommended values. Highly accelerated stress tests (HASTs) were also applied as an ageing method for confirmation of the high electrical stability of the silver layers.

Findings

The results prove the strong influence of the temperature and the time of the sintering process on the sheet resistance of the investigated silver-based layers deposited by inkjet printing technology on polyimide foils. The HASTs caused significant changes in the electrical conductivity for both nano-inks presented in this paper. The existence of noticeable dependence among the resistivity, thermal treatment and ageing was proved.

Originality/value

The main benefit lays in the optimization of sintering conditions to improve the electrical conductivity of the silver layers. The paper also presents a new approach for a stability analysis of the silver layers by HASTs.

Details

Circuit World, vol. 43 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 November 2016

Teija Laine-Ma, Pekka Ruuskanen, Satu Pasanen and Mikko Karttunen

The aim of this study was to evaluate the feasibility of pad printing for producing electrical conductors and to define the factors affecting the print quality of polymeric silver…

Abstract

Purpose

The aim of this study was to evaluate the feasibility of pad printing for producing electrical conductors and to define the factors affecting the print quality of polymeric silver ink conductors.

Design/methodology/approach

Polyethylene terephthalate (PET) film and polyphenylene oxide (PPO) compound film were used as substrate materials. Three different polymeric silver inks, marked A, B and C, were used and tested.

Findings

The results indicated that the important factors in the pad printing of silver ink conductors are the printing parameters and characteristics of the ink, pad, cliché and substrate. The interactions of these factors should be considered on a case-by-case basis. The sheet resistances of triple-pressed ink conductors varied between 20 and 110 mΩ/sq for 5.7- to 8.5-μm-thick conductors. Ink (B) had a higher sheet resistance than Ink (A) because of its lower silver particle content but also because of the shorter curing time and lower curing temperature. Ink (A) showed excellent adhesion on PET, and Ink (B) had moderate adhesion on PET without corona or plasma pre-treatments, but both inks adhered weakly on PPO compound. Both corona and plasma treatments raised adhesion of these two inks on all test substrates to the highest classification value, 5B.

Originality/value

This paper contains a survey and preliminary testing of the pad printing of polymeric silver ink conductors on flexible thermoplastic foils. Finally, the paper introduces the advantages and drawbacks of the technique.

Details

Circuit World, vol. 42 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 February 1988

D.J. Fearns

The properties and constituents of PTF inks are outlined. Surface resistivity in relation to PTF inks is defined. Applications of PTF inks are discussed with emphasis on potential…

Abstract

The properties and constituents of PTF inks are outlined. Surface resistivity in relation to PTF inks is defined. Applications of PTF inks are discussed with emphasis on potential design and cost benefits for SMT applications, including crossovers, polymer multilayer, printing through holes, printed resistors, carbon key pads, moulded and three‐dimensional circuits.

Details

Circuit World, vol. 14 no. 3
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 6 February 2017

Peter Lukacs, Alena Pietrikova, Beata Ballokova, Dagmar Jakubeczyova and Ondrej Kovac

This paper aims to find the optimal deposition conditions for achieving the homogenous structure of the silver layers onto three types of polymeric substrates as well as on the…

Abstract

Purpose

This paper aims to find the optimal deposition conditions for achieving the homogenous structure of the silver layers onto three types of polymeric substrates as well as on the rigid substrates. For this reason, the detailed investigation of the silver-based layers deposited at different technological conditions by microscopic methods is presented in this paper.

Design/methodology/approach

The special test pattern has been designed and deposited at different substrate temperatures by using two types of generally available silver-based nano-inks. Cross-sections and 3D profiles of the deposited silver layers have been profoundly analysed by using the optical profiler Sensofar S Neox on the generally used polymeric (PI, PET and PEN) and rigid substrates (951 and 9K7 LTCC, glass and alumina).

Findings

The results prove the strong correlation between the substrate temperature during the deposition process and the final shape of the created structure which has the a direct impact on the layers’ homogeneity. The results also prove the theory of the coffee ring effect creation in the inkjet printing technology.

Originality/value

The main benefit of this paper lies in the possibility of the homogeneity achievement of the deposited silver-based layers on the several polymeric and rigid substrates by managing the temperature during the deposition. The paper also offers the comparative study of nano-inks’ behaviour on several polymeric and rigid substrates.

Details

Circuit World, vol. 43 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 August 2011

Piotr Markowski

The purpose of this paper is to investigate the possible application of thick‐film, metal‐based thermocouples to microsystems power supply. The subject of matter was development…

Abstract

Purpose

The purpose of this paper is to investigate the possible application of thick‐film, metal‐based thermocouples to microsystems power supply. The subject of matter was development of the procedure of thick‐film thermopile miniaturisation.

Design/methodology/approach

The aptitude of four photoimageable inks (based on silver or silver‐palladium) to fabrication of miniaturised thermocouples' arms was investigated. The object of interest was their compatibility with different kinds of low temperature cofired ceramic (LTCC) substrates, maximum resolution, shrinkage and electrical resistivity. Usage of the laser shaping technique to fabrication of narrow thermocouples' arms was also subject of matter. After tests and processes optimization both techniques were combined to fabricate the thick‐film Ag/Ni microthermopile.

Findings

Most of investigated inks were compatible with all tested LTCC tapes – fired as well as unfired (green tapes). Photoimageable inks technique can be successfully used for thermocouples' arms miniaturization. 40 μm/40 μm line/spaces resolution can be easily achieved. Combining this technique with laser shaping enabled microthermopile fabrication. It consisted of 42 Ag (photoimageable)/Ni (laser shaped) thermocouples. Arms width was 40 μm and 225 μm (Ag‐ and Ni‐arm, respectively), spaces between them – 65 μm. Overall, width of single thermocouple was smaller than 0.4 mm.

Practical implications

Fabrication of microthermopile consisting of several hundreds of thick‐film thermocouples will be possible if described procedure is applied. Such microgenerator will generate output power sufficient to supply some microsystems or microelectronic circuits.

Originality/value

The properties of four photoimageable inks were investigated as well as their compatibility with five different LTCC substrates (fired and unfired). Procedure of thick‐film microthermopile fabrication using photoimageable inks technique combined with laser shaping was proposed for the first time.

Details

Microelectronics International, vol. 28 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 18 January 2016

Wenchao Zhou, Frederick A List, Chad E Duty and Sudarsanam S Babu

The purpose of this paper is to explore the possibility of integrating inkjet printed circuitry with fused deposition modeling (FDM) structures to produce embedded electronics and…

2053

Abstract

Purpose

The purpose of this paper is to explore the possibility of integrating inkjet printed circuitry with fused deposition modeling (FDM) structures to produce embedded electronics and smart structures. Several of the challenges of combining these technologies are identified, and potential solutions are developed.

Design/methodology/approach

An experimental approach is taken to investigate some of the relevant physical processes for integrating FDM and inkjet deposition, including the printing, drying and sintering processes. Experimental data are collected to assist understanding of the problems, and engineering solutions are proposed and implemented based on the gained understanding of the problems.

Findings

Three challenges have been identified, including the discontinuity of the printed lines resulting from the irregular surface of the FDM substrate, the non-conductivity of the printed lines due to the particle segregation during the droplet drying process and the slow drying process caused by the “skinning effect”. Two engineering solutions are developed for the discontinuity problem. The non-conductivity issue and the slow drying process are attributed to the motion of the nanoparticles caused by the evaporation flow. The thermally activated drying process for the Cabot ink suggests that the proposed solution is effective. Timescale analysis and experimental data show that the printing conditions do not have a clear influence on the conductivity of the printed lines, and drying and sintering processes are more important.

Research limitations/implications

No quantitative model has yet been developed for simulating the printing, drying and sintering processes associated with inkjet printing on FDM substrates. Quantitative models can be extremely valuable for improvement in understanding the problems, optimizing the proposed solutions and coming up with better solutions.

Practical implications

The research findings in this work have great implications in implementing a hybrid FDM-inkjet deposition machine for fabricating embedded electronics and smart structures. All the proposed engineering solutions for the identified problems can be potentially integrated into one machine.

Social implications

The success of the integration of the FDM and inkjet deposition process will enable the design of compact electro-mechanical structures to replace the large heavy electro-mechanical systems.

Originality/value

This work represents one of the first attempts for integrating inkjet deposition of silver nanoparticle inks with the FDM process for making compact electro-mechanical structures. Three critical challenges are identified, and corresponding engineering solutions are proposed and implemented based on analysis of the relevant physical processes, including the printing, drying and sintering processes, which has laid the foundation for integrating the FDM and inkjet deposition processes.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 January 1982

Anthony Smith

The replacement of man by computers and automated machinery continues. Reading machines are now being used in increasingly large numbers (a) to provide input data to computers and…

Abstract

The replacement of man by computers and automated machinery continues. Reading machines are now being used in increasingly large numbers (a) to provide input data to computers and (b) to activate equipment that performs minor tasks. The complexity of these tasks is expected to increase swiftly.

Details

Pigment & Resin Technology, vol. 11 no. 1
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 6 December 2020

Jayaraman Kathirvelan

This paper aims to encompass the technological advancements in the area of flexible sensing electronics fabrication particularly for wearable device development applications. In…

Abstract

Purpose

This paper aims to encompass the technological advancements in the area of flexible sensing electronics fabrication particularly for wearable device development applications. In the recent past, it is evident that there is a tremendous growth in the field of flexible electronics and sensors fabrication technologies all around the world. Even though, there is a significant amount of research has been carried in the past decade, but still there is a huge need for exploring novel materials for low temperature processing, optimized printing methods and customized printing devices with accurate feature control.

Design/methodology/approach

The author has done an extensive literature survey in the proposed area and found that the researchers are showing significant interest in exploring novel materials, new conductive ink processing methods suitable for additive manufacturing, and fabrication technologies for developing the plastic substrate-based flexible electronics for the on growing demands of wearable devices in the market.

Findings

The author has consolidated some of the recent advancements in the area of flexible sensing electronics using the inkjet-printing platform carried out by the researchers. The novel customized inkjet-printing technology, materials selections for device development, compatibility of the materials for the inkjet-printing process and the interesting results of the devices fabricated are highlighted in this paper.

Originality/value

The author has reported the novel inkjet-printing platforms explored by researchers in the recent past for various applications which primarily includes gas sensing. The author has consolidated in a crisp manner about the technology, materials compatible for inkjet-printing, and the exciting results of the printed devices. The author has reported the advantages and challenges of the proposed methods by the researchers. This work will bridge the technical gap in the inkjet-printing technology and will be useful for the researchers to take forward the research work on this domain to the next level.

Details

Sensor Review, vol. 41 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 826