Search results

1 – 10 of over 13000
Article
Publication date: 8 May 2018

Masoud Kharati-koopaee and Mahmood Fallahzadeh-abarghooee

This paper aims to study the effect of corrugated skins on the aerodynamic performance of the cambered NACA 0012 airfoils at different corrugations parameters, maximum cambers…

Abstract

Purpose

This paper aims to study the effect of corrugated skins on the aerodynamic performance of the cambered NACA 0012 airfoils at different corrugations parameters, maximum cambers, Reynolds numbers and maximum camber locations.

Design/methodology/approach

In this work, numerical approach is concerned, and results are obtained based on the finite volume approach. To characterize the effect of corrugated skins, the NACA 0012-corrugated airfoil section is chosen as the base airfoil, and different cambered corrugated airfoil sections are obtained by inclusion the camber to the base airfoil. In this research, the corrugation shape is a sinusoidal wave and corrugated skins are in the aft 30 per cent of airfoil chord. To investigate the effect of corrugations on the cambered sections, the drag coefficient and averaged lift curve slope for the corrugated airfoils are compared to those of the corresponding smooth sections.

Findings

Results indicate that the effect of increase in the maximum camber and also Reynolds number on the relative zero-incidence drag coefficient is of little importance at low corrugation amplitudes, whereas at high corrugation, amplitude results in different behaviors. It is found that as the maximum camber increases, the deterioration in the relative curve slope introduced by corrugated skins is reduced, and reduction in this deterioration is significant for high corrugation amplitudes airfoils. It is shown that an increase in the maximum camber location has nearly no effect on the relative zero-incidence drag coefficient and also relative lift curve slope.

Originality/value

The outcome of the present research provides the clues for better understanding of the effect of different corrugations parameters on the aerodynamic performance of the unmanned air vehicles to have as high aerodynamic performance as possible in different mission profiles of such vehicles.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2016

Yun Su, Yunyi Wang and Jun Li

The purpose of this paper is to provide the details of developments to researchers in test apparatus and evaluation methods to rate the thermal protective performance (TPP) of…

Abstract

Purpose

The purpose of this paper is to provide the details of developments to researchers in test apparatus and evaluation methods to rate the thermal protective performance (TPP) of firefighters’ clothing under high-temperature and high-humidity condition.

Design/methodology/approach

This review paper describes the influence laws of moisture on thermal protection and the moisture distribution in actual fire environment. Different evaluation methods used for assessing the effect of moisture on the TPP were investigated, with an emphasis on test devices, evaluation indexes as well as their relationship and limitations.

Findings

The moisture from the ambient, clothing and human perspiration plays an important role in determining the TPP of firefighter protective clothing. It is obvious that research on moisture-driven heat transfer in firefighter’s clothing system are comparatively little, primarily focussing on pre-wetted methods of multi-layer fabric. Further studies should be conducted to develop more standardized moistening systems and improve the current calculation methods for evaluating the performance of protective clothing. New explorations for heat and moisture transfer mechanism in protective clothing should be investigated.

Practical implications

Protective clothing is the efficient way to provide fire-fighting occupational safety. To accurately evaluate the TPP of protective clothing under high-temperature and high-humidity condition will help to optimize the clothing performance and choose the proper clothing for providing firefighters with the best protection under multiple thermal hazards.

Originality/value

This paper is offered as a concise reference for scientific community further research in the area of the TPP evaluation methods under high-temperature and high-humidity condition.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 June 2019

Ariel R. Belasen and Alan T. Belasen

Skin tone has been shown to impact the ability of darker-skinned athletes to maximize their earnings to potential earnings ratio. Additionally, studies of fan preference have…

Abstract

Purpose

Skin tone has been shown to impact the ability of darker-skinned athletes to maximize their earnings to potential earnings ratio. Additionally, studies of fan preference have found strong support for racial implications on team preference and ticket sales. The purpose of this paper is to test these theories empirically by examining the marginal impact of skin tone on top selling jerseys.

Design/methodology/approach

This study makes use of an ordered probit regression analysis to examine the impact of NBA players’ skin tone on their jersey sales after controlling for a number of other factors. Jersey sales are measured in rank order and skin tone is captured by measuring the level of pigmentation in player profile photos.

Findings

Overall, the study finds a significantly positive relationship between skin tone and jersey sale rankings. This runs contrary to the standard literature results that darker-skinned athletes are likely to earn less and attract fewer endorsements than their lighter-skinned counterparts. More specifically, the marginal impact of skin tone is comparable to the marginal impact of individual player statistics in determining how well a player’s jersey will sell.

Practical implications

If, in fact, fans are more likely to purchase jerseys from darker-skinned NBA players, it stands to reason that the standard business practice found in the literature of rewarding lighter-skinned players with higher salaries and better endorsement deals requires further investigation.

Originality/value

This study provides valuable information about athlete branding and offers insights to advertisers and sponsors seeking to align the strategy of branding athletes for increased jersey sales.

Details

International Journal of Sports Marketing and Sponsorship, vol. 20 no. 3
Type: Research Article
ISSN: 1464-6668

Keywords

Article
Publication date: 30 May 2019

Huiling Chen, Liguo Shuai, Weihang Zhu and Mei Miao

This paper aims to investigate the perception threshold (PT) of electrotactile stimulation under non-steady contact condition (NSCC) which is rarely considered in previous reports…

Abstract

Purpose

This paper aims to investigate the perception threshold (PT) of electrotactile stimulation under non-steady contact condition (NSCC) which is rarely considered in previous reports mainly because of the difficulty with experimental control. Three factors of NSCC are involved, including the current alternating frequency, the tapping interval of stimulation and the stimulating area of skin. The study is aimed at providing the basic PT data for design and application of wearable and portable electrotactile device.

Design/methodology/approach

The up-down method was selected to assess PT, and 72 experimental scenarios were constructed. During the study, we developed an experimental platform with the function of data record and programmable current stimulation. With psychophysical experiment, more than 10,000 data were collected. Furthermore, statics analysis and ANOVA test were opted for exploring the main factor influencing PT.

Findings

NSCC has different PTs on each body location, and PT has a positive correlation with frequency. In general, PT in NSCC is significantly lower than that in SCC. In some cases, it can be lower by more than 60 per cent. In addition, women have a lower PT than men across all age groups, and the younger is generally more sensitive than the older in electro-sensation.

Research limitations/implications

Limited factors of NSCC were considered in this study. Contact time and break interval should be investigated in the future work.

Practical implications

The paper includes implications for the development of smart electrotactile device.

Originality/value

This paper fulfills a challenge in assessing the PT under NSCC.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 May 2018

Koosha Choobdari Omran and Ali Mosallanejad

Double rotor induction machine (DRIM) is a particular type of induction machine (IM) that has been introduced to improve the parameters of the conventional IM. The purpose of this…

Abstract

Purpose

Double rotor induction machine (DRIM) is a particular type of induction machine (IM) that has been introduced to improve the parameters of the conventional IM. The purpose of this study is to propose a dynamic model of the DRIM under saturated and unsaturated conditions by using the equations obtained in this paper. Also, skin and temperature effects are considered in this model.

Design/methodology/approach

First, the DRIM structure and its performance will be briefly reviewed. Then, to realize the DRIM model, the mathematical equations of the electrical and mechanical part of the DRIM will be presented by state equations in the q-d axis by using the Park transformation. In this paper, the magnetizing fluxes saturation is included in the DRIM model by considering the difference between the amplitudes of the unsaturated and saturated magnetizing fluxes. The skin and temperature effects are also considered in this model by correcting the rotor and stator resistances values during operation.

Findings

To evaluate the effects of the saturation and skin effects on DRIM performance and validate the model, the machine is simulated with/without consideration of saturation and skin effects by the proposed model. Then, the results, including torque, speed, stator and rotor currents, active and reactive power, efficiency, power factor and torque-speed characteristic, are compared. In addition, the performance of the DRIM has been investigated at different speed conditions and load variations. The proposed model is developed in Matlab/Simulink for the sake of validation.

Originality/value

This paper presents an understandable model of DRIM with and without saturation, which can be used to analyze the steady-state and transient behavior of the motor in different situations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 November 2019

Jorge Rafael González-Teodoro, Enrique González Romero-Cadaval, Rafael Asensi, Roberto Prieto and Vladimir Kindl

The purpose of this paper is the presentation of an electrical equivalent circuit for inductive components as well as the methodology for electrical parameter extraction by using…

Abstract

Purpose

The purpose of this paper is the presentation of an electrical equivalent circuit for inductive components as well as the methodology for electrical parameter extraction by using a 3 D finite element analysis (FEA) tool.

Design/methodology/approach

A parameter extraction based on energies has been modified for three dimensions. Some simplifications are needed in a real model to make the 3 D finite element method (FEM) analysis operative for design engineers. Material properties for the components are modified at the pre-modeling step and a corrector factor is used at the post-modeling step to achieve the desired accuracy.

Findings

The current hardware computational limitations do not allow the 3 D FEA for every magnetic component, and due to the component asymmetries, the 2 D analysis are not precise enough. The application of the new methodology for three dimensions to several actual components has shown its usefulness and accuracy. Details concerning model parameters extration are presented with simulation and measurement results at different operation frequencies from 1 kHz to 1 GHz being the range of switching frequencies used by power electronic converters based on Si, SiC or GaN semiconductors.

Practical implications

This new model includes the high-frequency effects (skin effect, proximity effect, interleaving and core gap) and other effects can be only analyzed in 3 D analysis for non-symmetric components. The electrical parameters like resistance and inductance (self and mutual ones) are frequency-dependent; thus, the model represents the frequency behavior of windings in detail. These parameters determine the efficiency for the inductive component and operation capabilities for the power converters (as in the voltage boost factor), which define their success on the market.

Originality/value

The user can develop 3 D finite element method (FEM)-based analyses with geometrical simplifications, reducing the CPU time and extracting electrical parameters. The corrector factor presented in this paper allows obtaining the electrical parameters when 3D FE simulation would have developed without any geometry simplications. The contribution permits that the simulations do not need a high computational resource, and the simulation times are reduced drastically. Also, the reduced CPU time needed per simulation gives a potential tool to optimize the non-symmetric components with 3 D FEM analysis.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 May 2012

Martyn Gaudion

The purpose of this paper is to discuss nickel gold plating of PCB traces and its adverse effects on signal integrity, and to explore the other key drivers in optimising yields…

266

Abstract

Purpose

The purpose of this paper is to discuss nickel gold plating of PCB traces and its adverse effects on signal integrity, and to explore the other key drivers in optimising yields and controlling PCB processes that impinge on signal integrity.

Design/methodology/approach

The paper is a response to requests from PCB fabricators to explain why the losses on impedance controlled traces on PCBs were sometimes higher than expected.

Findings

While nickel is acceptable on short lengths of pad to accommodate gold plating, plating the whole trace length is generally not good practice from a digital signal integrity perspective. In addition, with the fastest serial transmission rates in the 10 to 20 GHz region and long serial words in some situations designers may need to consider both the associated high and low frequency performance.

Originality/value

With the development of ultra high speed digital bus architectures, PCB fabricators will appreciate the need to add an understanding of the drivers of insertion loss (base material loss tangent data, foil roughness and copper cross sectional areas) to their existing experience of architectures with minimal losses.

Article
Publication date: 5 May 2015

Rafal P. Wojda and Marian K. Kazimierczuk

The purpose of this paper is threefold. First, an analytical model based on one-dimensional Dowell’s equation for computing ac-to-dc winding resistance ratio FR of litz wire is…

Abstract

Purpose

The purpose of this paper is threefold. First, an analytical model based on one-dimensional Dowell’s equation for computing ac-to-dc winding resistance ratio FR of litz wire is presented. The model takes into account proximity effect within the bundle and between bundle layers as well as the skin effect. Second, low- and medium-frequency approximation of Dowell’s equation for the litz-wire winding is derived. Third, a derivation of an analytical equation is given for the optimum strand diameter of the litz-wire winding independent on the porosity factor.

Design/methodology/approach

The methodology is as follows. First, the model of the litz-wire bundle is assumed to be a square shape. Than the effective number of layers in the litz wire bundle is derived. Second, the litz-wire winding is presented and an analytical equation for the winding resistance is derived. Third, analytical optimization of the strand diameter in the litz-wire winding is independent on the porosity factor performed, where the strand diameter is independent on the porosity factor. The boundary frequency between the low-frequency and the medium-frequency ranges for both solid-round-wire and litz-wire windings are derived. Hence, useful frequency range of both windings can be determined and compared.

Findings

Closed form analytical equations for the optimum strand diameter independent of the porosity factor are derived. It has been shown that the ac-to-dc winding resistance ratio of the litz-wire winding for the optimum strand diameter is equal to 1.5. Moreover, it has been shown that litz-wire winding is better than the solid-round-wire winding only in specific frequency range. At very high frequencies the litz-wire winding ac resistance becomes much greater than the solid-round-wire winding due to proximity effect between the strands in the litz-wire bundle. The accuracy of the derived equations is experimentally verified.

Research limitations/implications

Derived equations takes into account the losses due to induced eddy-currents caused by the applied current. Equations does not take into account the losses caused by the fringing flux, curvature, edge and end winding effects.

Originality/value

This paper presents derivations of the closed-form analytical equations for the optimum bare strand diameter of the litz-wire winding independent on the porosity factor. Significant advantage of derived equations is their simplicity and easy to use for the inductor designers.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 November 2012

Rafal Piotr Wojda and Marian Kazimierz Kazimierczuk

The purpose of this paper is twofold. First, it aims to study the proximity‐effect power loss in the foil, strip (rectangular), square, and solid‐round wire inductor windings…

Abstract

Purpose

The purpose of this paper is twofold. First, it aims to study the proximity‐effect power loss in the foil, strip (rectangular), square, and solid‐round wire inductor windings. Second, it aims to optimize the thickness of the foil, strip, square wire windings, and the diameter of the solid‐round‐wire, the minimum of winding AC resistance and the minimum of winding AC power loss for sinusoidal inductor current.

Design/methodology/approach

The methodology of the analysis is as follows. First, the winding resistance of the single‐layer foil winding with a single turn per layer and uniform magnetic flux density B is derived. Second, the single‐layer foil winding with uniform magnetic flux density B is converted for the case, where the magnetic flux density B is a function of x. Third, the single‐layer winding is replaced by the winding with multiple layers isolated from each other. Fourth, transformation of the multi‐layer foil winding into different conductor shapes is performed. For the solid‐round‐wire windings, the results of the derivation are compared to Dowell's equation and verified by measurements.

Findings

Closed‐form analytical equations for the optimum normalized winding size (thickness or diameter) at the global or local minimum of winding AC resistance are derived. It has been shown that the AC‐to‐DC winding resistance ratio is equal to 4/3 (FRv=4/3) at the optimum normalized thickness of foil and strip wire winding hoptw. The AC‐to‐DC winding resistance ratio is equal to 2 (FRv=2) at the local minimum of the square wire and solid‐round‐wire winding AC resistances. Moreover, it has been shown that for the solid‐round wire winding, the proximity‐effect AC‐to‐DC winding resistance ratio is equal to Dowell's AC‐to‐DC winding resistance ratio at low and medium frequencies. The accuracy of equation for the winding AC resistance of the solid‐round wire winding inductors has been experimentally verified. The predicted results were in good agreement with the measured results.

Research limitations/implications

It is assumed that the applied current density in the winding conductor is approximately constant and the magnetic flux density B is parallel to the winding conductor (b>>h). This implies that a low‐ and medium‐frequency 1‐D solution is considered and allows the winding size optimization. This is because the optimum normalized winding conductor size occurs in the low‐ and medium‐frequency range. The skineffect winding power loss is much lower than the proximity‐effect winding power loss and therefore, it is neglected.

Originality/value

This paper presents derivations of closed‐form analytical equations for the optimum size (thickness or diameter) that yields the global minimum or the local minimum of proximity‐effect loss. A significant advantage of these derivations is their simplicity. Moreover, the paper derives equations for the AC‐to‐DC winding resistance ratio for the different shape wire windings, i.e. foil, strip, square and solid‐round, respectively.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 2003

H. Ymeri, B. Nauwelaers, K. Maex and D. De Roest

New analytical approximation for the frequency‐dependent impedance matrix components of symmetric VLSI interconnect on lossy silicon substrate are derived. The results have been…

Abstract

New analytical approximation for the frequency‐dependent impedance matrix components of symmetric VLSI interconnect on lossy silicon substrate are derived. The results have been obtained by using an approximate quasi‐magnetostatic analysis of symmetric coupled microstrip on‐chip interconnects on silicon. We assume that the magnetostatic field meets the boundary conditions of a single isolated infinite line; therefore, the boundary conditions for the conductors in the structure are approximately satisfied. The derivation is based on the approximate solution of quasi‐magnetostatic equations in the structure (dielectric and silicon semi‐space), and takes into account the substrate skineffect. Comparisons with published data from circuit modeling or full‐wave numerical analyses are presented to validate the inductance and resistance expressions derived for symmetric coupled VLSI interconnects. The analytical characterization presented in this paper is well situated for inclusion into CAD codes in the design of RF and mixed‐signal integrated circuits on silicon.

Details

Microelectronics International, vol. 20 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of over 13000